如何处理使用网络摄像头或智能手机拍摄的图像中可能出现的光学畸变

 诸如NFC、RFID和物联网系统传感器等无线应用均受益于印刷在塑料基板上的低成本天线。然而,当天线集成到系统中时,数据手册的指标与天线的实际行为及其与相邻结构的相互作用之间通常存在不匹配现象。在这种情况下,就需要执行更高级的分析,充分了解天线特性——这需要天线模型的精确EM模型。

 
从基本几何形状获得印刷天线几何模型的过程可能比较繁复,因为印刷天线通常具有多个弯曲和其他结构,以提高增益和增加带宽。比较简单的解决方案是从照片中导出模型
 
但是如何确保照片拥有足够的细节?如何处理使用网络摄像头或智能手机拍摄的图像中可能出现的光学畸变? 
 
以下两个应用程序可以帮助您解决这些问题。Computer Vision System Toolbox™中的CameraCalibrator应用程序可以校准网络摄像头,提高测量精度。Image Processing Toolbox™中的ImageSegmenter应用程序可对图像进行分割,获取天线边界。
 
以RFID标签为例,本文介绍利用 Camera Calibrator (Computer Vision System Toolbox™) 和 Image Segmenter (Image Processing Toolbox™) 进行照片构建和分析天线的工作流程(图1),包括分割图像、找到几何边界、校准天线尺寸以及使用全波矩量法(MoM)技术分析天线等步骤。
 
如何处理使用网络摄像头或智能手机拍摄的图像中可能出现的光学畸变
 
图1 通过照片构建和分析天线的工作流程
 
RFID标签
 
射频识别(RFID)标签通常用于箱子和托盘上进行库存跟踪。标签由辐射结构、天线和用于在频带上操作的芯片组成。天线通常是窄频带,两个主平面之中有一个为全向图案,并且在发生谐振时具有复阻抗,以此确保与芯片输入有良好的阻抗匹配。在本例中,我们的目标是确认 RFID 标签天线的这些端口、表面和场特性。
 
首先在高彩色对比度背景下拍摄标签照片。我们使用物美价廉的网络摄像头和网络摄像头功能直接在 MATLAB 中获取图像(图2)。
 
c = webcam(); img = snapshot(c)
 
如何处理使用网络摄像头或智能手机拍摄的图像中可能出现的光学畸变
 
图2 RFID标签的照片在高对比度背景下拍摄
 
为确保精确测量沿天线边界的距离,我们将摄像头直接放置在天线上,使沿天线表面的所有点距摄像头的距离大致相同。
 
使用 Camera Calibrator 应用程序校准摄像头
 
摄像头校准是距离测量工作的重要组成部分,尤其是在使用镜头光学系统品质较差的摄像机时,如本例所示。
 
使用Computer Vision System Toolbox中的Camera Calibrator应用程序,我们可以通过从不同方位和距离拍摄的棋盘校准图案来校准网络摄像头(图3)。
 
如何处理使用网络摄像头或智能手机拍摄的图像中可能出现的光学畸变