利用深度学习的方法得到了一种能够最大化非线性计算成像系统的实验设计

 计算成像系统架起了硬件和图像重建间的桥梁,让很多复杂的光学成像系统包括断层扫描、超分辨和相位成像等,都在计算成像的助力下得以通过对商业显微镜和计算重建的简单改造而实现。传统的方法要求用大量的测量来保证检测质量,但对于活细胞成像来说测量的次数则受到了细胞运动的限制,人们自然想知道什么样的测量方式是最为有效的?在最新发表的论文中,来自伯克利的研究人员利用深度学习的方法得到了一种能够最大化非线性计算成像系统的实验设计。

 
利用深度学习的方法得到了一种能够最大化非线性计算成像系统的实验设计
 
左图和中图为显微镜硬件附加了LED照明阵列,右图为LED的照明模式(工作频率100Hz)
 
如何设计更有效的成像方法?
 
标准的显微镜通过观察样本的吸收对比度来实现成像,但大多数生物细胞的组织吸收都很弱。虽然染料和色素可以提高对比度,但却会对活细胞长生不良影响。计算成像使得利用其它光学特性来获得强对比成像和定量测量成为可能(例如相位/折射率变化)
 
利用深度学习的方法得到了一种能够最大化非线性计算成像系统的实验设计
 
左边是显微镜观测细胞的吸收图像,右边是通过计算成像得到的细胞相位图像
 
同时可将显微镜的照相光源替换为可编程的LED阵列,在不同LED照明模式下的成像将会把样本的相位信息(空间谱)编码成强度信息来测量。在多次测量后(10~100)可利用这些信息定量地求解逆问题来重建样本的相位,并很有可能超过显微镜原有的分辨率,或者得到三维的信息。
 
但由于需要多次测量,需要权衡样本的重现质量与时间分辨率。当样本移动时,时间分辨率不足带来的模糊会造成成像质量下降。为了解决这一问题,研究人员们需要寻找如何在更少的测量下获得高精度的重建,从而改善成像的时间分辨率。但什么是LED阵列最好的照明模式?如何得到对信息最高效的编码方式呢?
 
利用深度学习的方法得到了一种能够最大化非线性计算成像系统的实验设计