人工智能在各个领域的发展情况

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能的发展必须建立在海量的大数据、以几何级数增长的计算能力和机器学习算法的突破的基础上,甚至可以简单理解为“深度学习+大数据=人工智能”。目前,这些问题都取得突破性进展。高性能人工智能处理器芯片GPU、FPGA、ASIC等不断涌现,使得数据处理能力大幅提升,海量数据为人工智能发展提供了充足的燃料,而大数据云计算技术等的应用使得信息的储存和开发得以实现。

 
“AI+”时代的来临,引发手机、物联网、汽车、芯片等硬件与软件服务等创新升级,人脸识别、虚拟现实等功能的拓展使得应用场景不断增多。
 
比如,搭载AI指纹识别、人脸识别的苹果手机及国产手机早已上市,今日头条也已运用自身已有的丰富的数据,包括文字、图片、视频、直播问答等,让人工智能技术参与创作和交流,由人工智能撰稿的文章已经为数不少,腾讯开发了类似于AlphaGo的围棋AI产品“绝艺”,阿里巴巴则开发了智能音箱天猫精灵X1和智能客服“阿里小蜜”。
 
AI+自动驾驶
 
2018年2月15日,时值中国狗年除夕夜,百度Apollo无人车惊艳亮相2018年央视春晚联欢晚会,百余辆“无人车”车队出现在港珠澳大桥上,并在无人驾驶模式下完成“8”字交叉跑等动作,此次亮相的百度Apollo无人车覆盖多种车型,包括百度与比亚迪合作的无人驾驶新能源乘用车,以及与金龙客车合作打造的全国首款无人驾驶循环巴士,以及无人驾驶扫路机和无人驾驶物流车等,使用场景包括家用出行、园区接驳、城市清洁、物流运输等。
 
这是“AI+自动驾驶”应用场景首次大规模呈现到国人眼前,可以想象的是,自动驾驶如果得到大规模应用,将极大颠覆我们目前的交通出行方式。不过,技术的进步和场景的应用是一个循序渐进的过程,目前大部分自动驾驶技术还是试验中。国际汽车工程师学会(SAE)于2014年发布了自动驾驶的六级分类体系,将自动驾驶技术分为0级、1级、2级、3级、4级、5级,共六个级别,具体级别划分和描述如下:
人工智能在各个领域的发展情况
                                                                SAE自动驾驶(ADAS)分级
 
目前,日常使用的大多数汽车处于第0级和第1级之间,而传统车商的智能汽车市场普遍处于第2级的阶段,即以辅助自动驾驶为主,特斯拉公司的Autopilot辅助驾驶技术属于第2级技术。
 
AI+智慧金融
 
人工智能的发展除了深度学习算法之外,大数据的运用为AI提供了坚实的基础,而金融行业可以说是全球大数据积累最好的行业,银行、证券、保险等业务本来就是基于大规模数据开展的,这些行业很早就开展了自动化系统的建设。大部分金融从业人员每天都要花费大量的时间对数据进行处理和分析。过去几十年,金融行业已经习惯了根据数学方法和统计规律,为金融业务建立自动化模型,来拟合复杂数字世界里的隐含规律。
 
不过,相比于传统金融分析,人工智能数据处理量更大,成本更低,速度更快,而且可以做到7X24小时,为客户提供更多、更准确、更快捷的附加价值,而且随着智慧金融的发展,金融机构可以开发更多长尾市场的客户,余额宝的运用就是很好的例子。
 
蚂蚁金服推出的余额宝,在2013年上线以来,目前余额宝规模已经高达1.7万亿规模,是全球最大的货币型公募基金,余额宝的用户规模近5亿人,许多都是金额不大的长尾用户。余额宝的火爆增长可以看出:低净值客户的投资热情持续高涨,已经不简单满足于银行低利率的活期存款,而希望能够得到更多的金融服务。
 
2018年6月9日,蚂蚁金服宣布完成新一轮融资140亿美元,创下迄今为止全球最大的单笔私募融资金额,本轮融资主要用于支付宝在全球化的拓展。融资结束后,蚂蚁金服估值已经高达1500亿美元。
 
人工智能在金融领域的发展仍然具有很大前景。目前,人工智能在金融行业比较成熟的应用主要有智能投顾、智能量化交易与智能客服,主要采用的方法有机器学习、自然语言处理、知识图谱和计算机视觉等。
人工智能在各个领域的发展情况
                                                                    AI+智慧金融三大应用
 
AI+智能安防
 
2011年-2016年,国内安防市场连续五年维持两位数增长,2016年国内安防市场规模达到5410亿元,其中,安防设备市场规模约1900亿元,视频监控是安防行业最大的应用产品,规模为962亿元,占整体安防设备规模的50.63%。不过,传统安防行业同质化严重,视频监控中网络化、高清化进程加速成为趋势。
 
智能安防的主要目的是:通过将视频监控中非结构化的图像信息,转换为计算机能够理解的结构化数据,凭借数据挖掘方式,将“海量视频数据”转化为“有效情报”,实现安防行业从“看得清”到“看得懂”的智能化升级。
人工智能在各个领域的发展情况