IC技术的进步促进设计与制造间的合作

集成电路设计师与制造者需要彼此合作。没有设计,圆片厂就会闲置;缺少制造环节,设计就只会是一种理论构想。双方只有共同合作才能适时提交出功能电路。

  虽为相互依存,但双方的关系会变得很不通畅。设计者一般都是电气工程师,没有太多的制造经验,而生产工程师一般都很少从事过电路设计。然而随着电路特征尺寸的缩小,设计和制造彼此间相互影响的程度却变得越来越深。

  正如英特尔公司所述,器件技术的每一次新成果都使设计对工艺特性的敏感性更强。在0.35微米阶段,设计师尚可把工艺当黑盒对待。他们只需连接逻辑电路中的库元件,然后用布局布线软件创建物理布图即可。大多数情况下,电路都能按预期工作。

  但从0.25微米技术开始,互连布线成为构成电路总延迟的原因。两电路元件间的物理距离对信号时序的影响被首次纳入考虑。时序分析成为电路仿真的重要内容。

  0.18微米的设计难度倍增

  目前为大多数低成本电路设计所采用的0.18微米技术,把信号完整性问题摆在了首位。两条相邻导线间因空间距离的缩短,使其电容量迅速增高。串扰成为亚0.18微米时代的主要问题。

  自动仿真工具虽然好用,但目前还不能找出并纠正全部的信号完整性问题。就一般设计而言,总有近30项冲突需要工程师用手工识别和纠正。
0.18微米级技术所涉及的更深层次的问题是对维护功率完整性要求的考虑。虽然电源电压在日趋降低,但功能的增多使芯片尺寸保持原样或增大。大尺寸芯片导线较长,这导致电阻值、电容性密度的增大,并最终使功耗增加。电源电压在长导线上很难保持均匀,而数毫伏的电压值变化会造成电路性能10-15%的下降。

  虽然铜互连可缓解功率分配问题,但特征尺寸的缩短会使电阻值持续地成倍增长。铜技术只是为设计师提供了更大的喘息空间,没有从根本上解决这一问题。与此同时,低k介质的投入生产也没有想像的那么快。使用硅氧化物(sio2)介质,设计师必须考虑对超出预期的电容性延迟和串扰进行补偿。

  铜互连还带来制造上的新问题。cadence称,化学机械平坦化(cmp)工艺的实施情况与图案密切关联,铜互连不同寻常的设计规程(rule)让供应商感到束手无策。有些情况下,设计规程与所在布线层及其下层的特征线(feature)密度都相关。在设计中用到类似嵌入式微处理器等知识产权ip模块时,与多层规程的对应就变得特别困难。ip供应商或许只有冻结模块使用层,才能使电子设计自动化(eda)工具无法改变甚至探到布图细节。

  opc设计

  0.18微米技术首次将光学近似修正(opc)方法广泛用于亚波长光刻应用中。opc通过对掩膜的修改可以增强比曝光波长更细的特征线的印制。通常在物理设计后处理阶段进行掩膜数据准备时加上opc修正值。基于规程的opc,在后处理过程为所有满足给定规范的矩形小条加上增强型特征线。基于模型的opc,速度虽慢但更精确,它可以对特征线的实际曝光结果进行仿真。利用模型方法添加增强型特征线可实现仿真特征线与物理设计的匹配。

  在数据准备时 ,实施opc将打乱用来实现设计文件管理的分层描述。一项设计可能在多个不同位置上使用一个给定库元件。分层设计针对所需的多个参照只存储一份该元件的拷贝。opc的修正值与实施修改的特征线周边最大"光晕距离"2.0微米的范围内的所有特征线都相关。opc的光晕距离比信噪或其它电子效应的作用范围更长。

  由于每一例库元件可能有不同的周边环线,因此在元件的扩展描述中必须纳入有关光晕区的描述。这样做会使电路元件分层变得扁平化。
opc的使用将使数据量增大10倍。photronics公司信息系统副总裁预计,65nm技术级的文件量将达到0.75tb(1tb=1000gb)。用现有技术单是转移如此大的文件就得两天时间。除非情况有所改观,否则数据准备将使掩膜写入时间大为增加。将opc并入设计库有助于减小文件量。作为库的一部分,opc光晕距离规程可在用布局布线工具创建物理设计时使用。

  但进行opc的并入,库供应商则必须对目标圆片厂的光刻工艺有所了解。由基本设计元件构成的库原本就是与工艺相关的。从

  • IC技术的进步促进设计与制造间的合作已关闭评论
    A+
发布日期:2019年07月02日  所属分类:参考设计