摘要:本文介绍了国产多电平高压变频器的原理及其在建设兵团奎屯电厂中的应用情况,结果表明,对电厂循环泵设备进行变频改造后,节能效果非常明显,并提高了设备和系统的安全可靠性,改善了水泵和电机的使用寿命。
关键词:高压变频器 节能
1 引言
随着国民经济的持续发展,能源问题日益的突出,节能问题愈来愈受到重视。据统计,目前全国各类电机年耗电量约占全国总发电量的65%,而其中大功率风机、泵类是年耗电量约占工业总耗电量的50%,最大限度地降低风机、泵类等设备的耗电量对于节能具有重要意义。
建设兵团新疆奎屯电厂二厂装机容量为2×250mw。在循环供水系统中,是由循环水泵实现水资源的循环利用的,经热交换后的热水进入冷却设施进行冷却,使其水温降至允许值,然后又重复将冷却水输入凝汽器而循环使用。由于系统水位基本上是稳定的,故循环水泵的扬程也基本稳定,而其容量按计算水量确定。两台机组使用共有循环水管供水,配备4台功率为176kw循环水泵,配套电机为250kw/6kv及220kw/6kv各两台。
在变频改造前,水量调节是通过调节水泵阀门的开度来实现,水泵及电动机运行在低效率工作区,能源浪费严重,同时由于奎屯电厂属于独立电网,工频直接启动对电动机和电网的冲击都很大,并容易造成电机笼条松动、有开焊断条的危险。
基于以上原因,奎屯电厂决定对机组循环水泵进行了变频改造,通过考察,最后选择广东明阳龙源电力电子有限公司型号为mlvert-d06/320的变频器对两台250kw/6kv电机进行“一拖二”改造。
2 高压变频器的组成和原理
mlvert-d系列高压变频器是广东明阳龙源电力电子有限公司生产的具有自主知识产权,无电网污染的调速系统,采用的结构为多单元串联,输出为多电平移相式pwm方式。特别适合于风机、泵类工业应用现场,已经被广大工业用户接受和充分认可。下面以6kv系列为例说明其原理,变频器主电路结构。
该高压变频器具有运行稳定、调速范围广、输出波形正弦好、输入电流功率因数高、效率高等特点,对电网谐波污染小,总体谐波畸变thd小于4%,直接满足ieee519-1992的谐波抑制标准,功率因数高,不必采用功率因数补偿装置,输出波形好,不存在谐波引起的电机附加发热和转矩脉动、噪音、输出dv/dt、共模电压等问题,不必加输出滤波器,就可以使用普通的异步电机。
2.1 输入变压器
mlvert-d06系列高压变频器的输入侧隔离变压器采用移相式变压器,变压器原边绕组为6kv,副边共18个绕组分为三相。每个绕组为延边三角形接法,分成6个不同的相位组,分别有±5o、±15o、±25o移相角度,形成36脉波的二极管整流电路结构。每个副边绕组接一个功率单元,这种移相接法可以有效地消除35次以下的谐波。对电网谐波污染小,直接满足ieee519-1992的谐波抑制标准。
2.2 功率单元
电网送来的三相6kv/50hz交流电经输入变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交直交pwm电压源型逆变器结构,相邻功率单元的输出端串接起来,形成y接结构,实现变压变频的直接输出,6kv输出电压每相由6个额定电压为580v的功率单元串联得到,输出相电压3480v,线电压可达6kv。
每个功率单元采用电压源型结构,直流环节为滤波电容,电机所需的无功功率由电容提供,而不需要和电网交换,变频器输入功率因数高,可保持在0.96以上,且在整个速度范围段内基本保持不变,不需采用功率因数补偿装置。
每个功率单元通过光纤通讯接收主控系统发送的调制信息以产生负载电机需要的电压和频率,而功率单元的状态信息也通过光纤反馈给主控系统,由主控系统进行统一控制。该光纤是模块与主控系统之间的唯一连接,因而每个功率单元与主控系统是完全电气隔离的。
2.3 高压变频器pwm技术
高压变频器的pwm技术是变频器研究中一个关键技术,它不仅决定功率变换的实现与否,而且对变频器输出电压波形的质量,电路中有源和无源器件的应力,系统损耗的减少与效率的提高等方面都有直接的影响。
mlvert-d06系列高压变频器采用了移相式多电平pwm技术,它是传统的两电平pwm技术的扩展,它的本质是pwm技术与多重化技术的有机结合。这里以2单元串联的高压变频器为例说明其基本原理。
移相式多电平pwm调制的波形图。两个功率单元的载波互差180度相位角,2个载波调制同一信号波,调制方法是,当信号波大于三角载波时,给出导通控制信号;相反则给出关断控制信号。每个功率单元两个半桥上下桥臂开关管互补导通和关断,驱动 、 、 、 开关器件的驱动信号、由此产生的两个功率单元输出电压波形以及合成电压波形。
对于6功率单元串联高压变频器,各单元采用共同的调制波信号,各载波的相位相互错开载波周期的1/6