1前言
减少电子产品的组装尺寸、重量、避免连线错误,增加组装灵活性,提高可靠性,实现不同装配条件下的三维立体组装,是电子产品日益发展的必然需求,挠性电路作为一种具有薄、轻、可挠曲等可满足三维组装需求的特点的互连技术,在电子及通讯行业得到日趋广泛的应用和重视。
随着其应用领域的不断扩大,挠性线路板本身也在不断发展,如从单面挠性板到双面、多层乃至刚——挠性板等,细线宽/间距、表面安装等技术的应用以及挠性基材本身的材料特性等、对挠性板的制作提出了更严格的要求,如基材的处理,尺寸的稳定性的控制,去沾污,小孔金属化及电镀的可靠性及表面保护性涂覆等方面都应予以高度的重视,本文仅就在研究和生产过程中所选择的工艺以及应注意的问题进行总结和阐述。
2多层挠性线路板
2.1材料的选择
挠性印制线路板所选用的材料直接影响板子生产及其性能。
覆铜材料我们选用日本新日铁的无粘接剂聚酰亚胺(pi)挠性基材(sb18—25—18,sb18—50—18等),聚酰亚胺是一种很好的可挠性,优良的电气性能和耐热的材料,但它具有较大的吸湿性和不耐强碱性。之所以选择无粘接层的基材,是因为介电层与铜箔间的粘接剂多为丙烯酸、聚酯、改性环氧树脂等材料,其中改性环氧树脂粘接剂可挠性较差,聚酯类粘接剂虽可挠性好,但耐热性较差,而丙烯酸粘接剂虽然在耐热性、介电性能以及可挠性方面令人满意,但其玻璃转化温度(tg)较低(40℃左右),以及极差的耐碱性给加工及焊接带来困难。
由于丙烯酸粘接片tg较低,在钻孔过程中产生的大量沾污不易除去,影响金属化孔质量,以及其它粘接材料的各种不尽人意处,所以,多层挠性板的层间粘接层我们选用聚酰亚胺材料,如新日铁的spb50a、spb35a等,因为它与pi基材配合,其间的cte(热膨胀系数)一致,克服了多层挠性线路中尺寸不稳定性的问题,且其它性能均能令人满意。
外层图形的保护材料,一般有两类可供选择,一类是干膜型(覆盖膜),一种是选用聚酰亚胺材料,无需粘接剂直接与蚀刻后需保护的线路板以层压方式压合,这种覆盖膜要求在压制前预成型,露出需焊接部分,故而不能满足较细密的组装要求,另一种是感光显影型覆盖干膜,以贴膜机贴压后,通过感光显影方式漏出焊接部分,解决了组装细密性的问题,还有一类是液态丝网印刷型覆盖材料,常用的有热固型聚酰亚胺材料,如新日铁spi200以及感光显影型挠性线路板专用阻焊油墨,如高氏xv—601t等。这类材料能较好地满足细间距、高密度装配的挠性板的要求。
2.2生产工艺的确定及非常规部分的控制
多层挠性板的研制是在双面挠性板及高密度多层刚性板的基础上进行的,在工艺制造方面与刚性板有很多相同的地方,但是,由于挠性材料及其应用的特殊性,决定了它从设计要求到制作工艺都有别于普通的刚性板,几乎对每一个生产环节都要进行试验、调整,最终优化整个工艺流程和参数。
2.2.1工艺流程
基材下料→预烘→电解清洗底片准备→内层单片图形转移→酸性蚀刻→aoi检查→ope冲制后定位孔→内层氧化→层压→钻孔→等离子体去沾污→金属化孔→外层图形→aoi检查→图形电镀→碱性蚀刻→退铅锡→通断测试→覆盖保护层→涂覆有机预助焊剂→外型加工
2.2.2内层单片的图形转移
图形转移在高密度、细线条的印制板中占据非常重要的地位,对挠性线路而言,尤其如此。因为挠性单片既薄又软,给表面处理等操作带来很大困难,而铜箔表面的清洁状态及粗糙程度直接影响抗蚀干膜的贴附及细线条的制作。由于机械擦板对设备要求较高,且不适宜的压力可能造成基材变形、卷折、尺寸伸缩等,操作不易控制,故而我们选择使用电解清洗法。这种方法既可保证表面清洁度,微蚀步骤又可保证铜面的粗糙度,有利于0.1mm~0.15mm线宽/间距的图形制作。
酸性蚀刻除了注意控制蚀刻速率以保证设计要求的线宽、间距外,更要注意防止单片的卷曲、皱折,最好是加牵引板且关闭设备上的抽风系统。
2.2.3挠性材料的多层定位
挠性基材的尺寸稳定性较差,这是因为聚酰亚胺材料有较强的吸潮性,经过湿处理或在不同的温、湿度环境中收缩变形严重,造成多层板的层压对位困难。为了克服这一困难,可采用以下措施:
(1)ope冲制后定位孔,能消除湿法处理过程中材料伸缩变形带来的误差。
(2)层压后用x—ray对位钻孔,确定偏移量,使钻孔更为精确。
(3)针对聚酰亚胺的材料特性及环境特点,参考钻孔偏移量绘制外层底片,提高外层底片与钻孔板的重合度。
这样,我们就可以满足层间对位保证0.1mm~0.15mm环宽的要求,保证外层图形转移的精确度。
2.2.4层压
即使是采用ope冲制后定位孔,层压前的单片处理对层间对位也有着很大影响。首先,由于聚酰亚胺材料不耐碱,在强碱溶液中产生溶胀











