现在的技术发展实在太快,很多人还没弄清sata到底有什么好,sataii又来了。在传统的ide、潮流的sata与前卫的sataii硬盘之间,到底有着什么样的区别?几种不同的硬盘各自价格等方面又是怎么样?相信很多朋友都想知道。
在深入了解新标准之前,有必要回顾一下原有的技术。长期以来,硬盘技术的进步,都着重于传输速度和容量两个方面。基本上认识电脑以来,大家就一直在使用ultraata。这种延用已久的接口技术,有好些方面都显得过时而需要改进了:
大家都知道,数据线太粗,安装不方便,严重影响机箱内空气流通,不利于机箱散热,是传统ide接口即ultraata硬盘的至命缺点。不过,ide硬盘还有很多其它方面的局限性,大概就不是很多人都清楚了。
主从盘相互影响
普遍情况下,一块主板只有两个ide接口,每个接口可以挂两个ide设备。但同一个接口的两个设备是共用带宽的,对速度的影响非常大。所以稍有常识的人,都会把硬盘和光驱分开两条ide线连接到主板上
这样,ide有个很大的问题,就是虽然一块主板可以连接4个设备,但事实上只要超过两个,速度就大大下降。
更大的问题是,同一条线上两个设备要严格按主/从设置才能正常运行。象图中这种西数wd400jb,主硬盘还有两种不同设置,一条ide线只接这块硬盘的时候按右边的设置,带从盘的时候则要按中间的设置方式。据亲身经验,如果没带从盘而按中间的方式设了,会出现五花八门百思不得其解的问题——有时可以启动,有时报告找不到硬盘,有时启动过程中报告硬盘错误之类——每次启动可能出现不同的问题。
不支持热拔插
并行ata在支持设备热插拔方面能力有限,这一点对服务器方面的应用非常重要。因为服务器通常采用raid的方式,任何一块硬盘坏了都可以热拔插更换,而不影响数据的完整性,确保服务器任何情况下都正常开着。具有热插拔支持功能的scsi和光纤通道占据了企业级应用的几乎全部市场,并行ata空有价格优势而不能获得一席之地,主要原因就是它不支持热拔插。
不够完善的错误检验技术
ultradma引入了基于crc的数据包出错检测,该技术是ata-3标准的组成部分。但是,没有任何一种并行ata标准提供命令和状态包的出错检测。尽管命令和状态包出错的范围和几率都小,但它们出错的可能性也不容忽略。
使用过时的5伏电压
处理器核心从几个方面要求向低电压过渡。较低电压允许更快的信号陡变,这对提高速度、降低热耗至关重要。现在的cpu核心电压基本上都小于2伏,为保持与系统主板上其它芯片的互操作性,通常使用3.3伏的外部电压分离出来,5伏电压成为过时的标准。虽然大部分目前的ata/atapi-6标准为并行ata设备指定的直流电压供应为3.3v(±8%),但一些模式的接收器大于4伏,所以要使用过时的5伏电压。
接口速度的可升级性差
另外,ultraata是受并行总线特性的限制,带宽容易受到限制,经过多次升级,目前最高传输率也只是133m字节/秒。
sata比ide优越在哪些地方?
sata不再使用过时的并行总线接口,转用串行总线,整个风格完全改变。
sata与原来的ide相比有很多优越性,最明显的就是数据线从80pin变成了7pin,而且ide线的长度不能超过0.4米,而sata线可以长达1米,安装更方便,利于机箱散热。除此之外,它还有很多优点:
一对一连接,没有主从盘的烦恼
每个设备都直接与主板相连,独享150m字节/秒带宽,设备间的速度不会互相影响。
支持热拔插
热拔插对于普通家庭用户来说可能作用不大,但对于服务器却是至关重要。事实上,sata在低端服务器应用上取得的成功,远比在普通家庭应用中的影响力大。
数据传输更加可靠
sata提高了错误检查的能力,除了对crc对数据检错之外,还会对命令和状态包进行检错,因此和并行ata相比提高了接入的整体精确度,使串行ata在企业raid和外部存储应用中具有更大的吸引力。
低电压信号
sata的信号电压最高只有0.5伏,低电压一方面能更好地适应新平台强调3.3伏的电源趋势,另一方面有利于速度的提高。
带宽升级潜力大
sata不依赖于系统总线的带宽,而是内置时钟。刚推出的这一代sata内置1500mhz时钟,可以达到150m字节/秒的接口带宽。由于不再依赖系统总线频率,每一代sata升级带宽的增加都是成倍的:下一代300m字节/秒,再下一代可以达到600m字节/秒
sata仍然存在的几点不足
在国内,现在买ide的人恐怕比买sata的人多很多。主要有三个方面的原因:
首先,sata的诸多先进性总体上对个人电脑用户意义不是太大,它最大的意义的反而是适应了入门级企业应用的需要。
其次,nforce4、915之前的那些主板使用sata硬盘,在安装操作系统的时候需要用到软盘,就象scsi硬盘那样,增添了用户的麻烦。
另外,国内用户的电脑配