摘要:电池续航时间是移动计算市场上的核心竞争力之一,这涉及两个方面:一是每次充电后系统能支持多长使用时间,二是系统在产品使用寿命内的每个充电周期都能提供一致的使用能力。通过结合使用2S电池组和由DA9312所支持的高集成度电压转换策略,与现有分立解决方案相比,不仅有可能使PCB面积减半,还有可能使元件数量和PCB高度减半。
移动计算市场发展非常迅速,各生产商为争夺市场份额纷纷展开激烈竞争。竞争的其中一项关键点是电池续航时间,这涉及两个方面:一是每次充电后系统能支持多长使用时间,二是系统在产品使用寿命内的每个充电周期都能提供一致的使用能力(图1)。
移动设备内部计算元器件如今被广泛采用在从可穿戴设备到笔记本电脑等众多应用中(图2),但电池容量与元器件的发展速度并不相同,因此生产商都在探索各种方法对电池进行配置,以便尽可能从现有的电池技术中获得更多电量。电池配置和系统架构的协同优化,为生产商提供更大功率效率、进而提供更长电池续航时间提供了一条康庄大道。
目前的一个主要问题是现在的处理器和系统级芯片(SoC)芯片在低电压条件下的高功率需要,这会导致高峰值电流需求。需要最大电流的时间可能很短,但其对系统一次充电能运行多长时间和总使用寿命有很大的影响。
今天的SoC迫使系统设计工程师在他们的电池解决方案中选择高电流放电率。提高SoC能效的需要促使他们降低内核电压——现已大幅降至1V以下。通常,当输入与输出电压比处于低水平时,向这些器件供电的降压转换器具有更高的工作效率,这使得看上去低压电池配置可提供更低的功率损耗,从而帮助确保系统一次充电运行更长时间。但使用低供电电压会导致电池组提供更大电流。
高放电速度下的反复电量损耗会显著降低电池的有效容量。为此,电池生产商都针对其产品在规定循环寿命下的最大放电速度给出了建议。
在2A平均放电电流下,电池在500个充放电循环后,还能充满其额定容量的95% 以上。在20A平均放电电流下,该有效容量会降到仅70%,从而限制电池的使用寿命。在旧式设计中,电池常常可以更换。但生产商由于希望向用户提供更长的一次充电可运行时间,越来越倾向于使用不容易更换的嵌入式电池。
嵌入式电池方案为生产商提供了更多途径来增加其产品的额外电池容量。一些可翻转式平板电脑设计将电池嵌入平板电脑和键盘模块的多个位置,以提供比使用单个可拆卸电池组更高的总容量。因此,嵌入式电池解决方案在可使用周期内的容量变得日益重要。
电池单元的布置方式可决定输出电压和峰值电流额定值,因而电池配置常常以电池单元的布置方式来表示。电池单元可能采用并联(p)布线,这时的总峰值电流输出等于一个单元的输出乘以并联布线中的单元数量。2P 配置能够有效地使电流加倍。相反,在采用串联(s)布线中,输出电压将会增加,2S配置可使输出电压加倍。有些系统(特别是笔记本电脑)使用混合布线,如 3S2P配置。较小的系统常常使用1S、2S或3S布线。
技术专区
- 基于BD57020MWV和BD57015GWL的无线充电参考设计
- 艾拉比FOTA升级加码怪兽共享充电 玩转生活不断电
- 富士康收购贝尔金或将成为无线充电巨头
- Maxim发布业界最低静态电流、最高峰值效率的超小尺寸降压转换
- 电动车充电分为哪几个过程