传感器工作原理及系统和测量方法
利用衍射光栅和位敏探测器的光学应变传感器的应变测量原理。衍射光栅粘附在试样的表面,当单色准直光束垂直入射到线性光栅(>40line/mm)平面上时,照亮了光栅平面上的一个点,而在平行于光栅平面的屏上可观察到一组衍射光斑。在图1中,激光束垂直于试样表面入射到反射型衍射光栅上。对于高频衍射光栅只能观察到实际用于应变测量的±1衍射级的衍射光束。这种衍射光束由距光栅L的高分辨率敏位探测器接收。当光栅跟随试样形变时,平面内的形变和平面外沿光束入射方向的位移将引起衍射光束的移动。对于垂直于试样表面的入射激光束,±1级衍射光束沿传感器长度的位移由下式给出: (1) 式中,p—光栅的空间频率。 b—±1级衍射光束的衍射角; l—激光波长;如果试样发生小的形变,光栅线距(空间频率)将改变Dp,按照方程(1),衍射角改变Db,因此可得: (2) 这就是说: (3) 式中,ex是沿x方向的正应变。 假定衍射光束垂直于位敏传感器平面,沿传感器1的位移为: (4) 对于传感器2,只要将b换成-b,可得: (5) 因此,由方程(4)和方程(5)可得基本应变测量方程。
传感器系统和测量方法
1、传感器系统硬件图2所示为传感器系统配置,可应用于实验室和工业现场,,由激光源、2个位敏传感器、2个633nm带通滤波器、会聚透镜和光栅组成。光栅的空间频率为1200line/mm,粘附于试样的表面。直径约1mm的He-Ne激光束(632.8mm)入射到光栅平面上的任一点。位敏探测器是基于单片光电二极管的光电子器件。该系统的主要特点是: ①空间分辨率高于其它器件(如CCD); ②利用两个电压信号确定传感面积上光束的位置,便于信号的快速处理; ③体积小; ④相对位置分辨率高(1/5000); ⑤不受光强度变化的影响,因而即使光强变化时也能精确地测量位置; ⑥光谱灵敏度宽(300到1100nm),因而可利用不同波长的激光束; ⑦响应时间快(<20ms),适于动态应变测量。两个位敏传感器的输出电压信号通过A/D转换器送到计算机,最大数据采样速率可达105次/s。两个633nm的滤光器可消除背景光,减少噪声影响。 2、调节方法如果激光束不能垂直入射到试样表面,将引起严重的测量误差。这种激光束的误准直是难以消除的,除非光栅到激光器的反射零级光束与入射光束重合。这种光束的重合必须沿垂直方向,确保±1级衍射光束对称分布。系统调节的关键是使入射激光束垂直于试样表面,必须仔细检查光栅是否牢固地粘附于试样表面,试样是否完全定位。此外还可调节位敏传感器使衍射±1级光束正好位于两个位敏传感器平面的中心。 3、测量方法主要测量步骤如下: ①试样与衍射光栅的准备工作类似于莫尔干涉仪; ②在100~500mm之间确定位敏传感器到光栅的距离L,并输入到计算机软件。不能选择L=250mm; ③加负荷前的初始试验是测量x10和x20的平均值; ④对试样加压,测量新的x1和x2的平均值; ⑤利用方程(6)计算应变。所有的计算都是由计算机软件自动完成的。 4、接口软件流程是用LabVIEW完成的,包括数据采样、滤波、计算、读出和写入存储器、显示屏等。数据处理速度很高,整个处理周期约0.1s。所有的信号处理和数据采集都是自动的。应变测量结果以数字和图线的形式连续地显示在PC屏上。