三极管振荡电路是怎样的,它的原理是什么?

振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。振荡电路是将电源的直流电能,转变成一定频率的交流信号的电路,作用是产生交流电振荡,作为信号源。三级管振荡电路是常见的一种振荡电路。

三极管振荡电路基本原理

三极管振荡电路是怎样的,它的原理是什么?

由上图可见,这个电路是由两个非门(反相器)用电容C1,C2构成的正反馈闭合环路。三级管Q1的集电极输出接在Q2的基集输入,Q2的集电极输出又接在Q1的基极输入。电路接通电源后,通过基极电阻R2,R3同时向两个三极管Q1,Q2提供基极偏置电流。使两个三极管进入放大状态。虽然两个三级管型号一样对称。但电路参数总会存在微小的差异,也包括两个三极管本身,也就是说T1,T2的导通程度不可能完全相同,假设Q1导通快些,则D点的电压就会降的快些。这个微小的差异将被Q2放大并反馈到Q1的基极,再经过Q1的放大,形成连锁反应,迅速使Q1饱和,Q2截止,D点变成低电平“0”,C点变成高电平“1”。

Q1饱和后相当于一个接通的开关,电容C1通过他放电。C2通过它充电。随着C1的放电,由于有正电源VCC的作用,Q2的基极电压逐渐升高,当A点电压达到0.7V后,Q2开始导通进入放大区,电路中又会立刻出现连锁反应,是Q2迅速饱和,Q1截止,C点电位变电平“0”。D点电位变高电平“1”。这个时候电容C2放电,C1充电。这一充放电过程又会使Q1重新饱和,Q2截止。如此周而复始,形成振荡。

由上可以知道通过改变C1,C2的电容大小,可以改变电容的充放电的时间,从而改变振荡频率。

Q1、Q2的影响

在上述多谐振荡电路原理图中两只晶体管不会是完全相同的,因此,即使两级用的是相同型号的晶体管和用相同的元件值,一个晶体管也会比另一个起始导电量稍微大些。

假定Ql的导电量稍大些,由于Ql的电流大,它的集电集电压下降就要比Q2的快些。结果,被通过电阻器R2放电的电容器C2藕台到Q2基极的电压就要比由C1和Rl藕合到Ql基极的电压负值更大些。这就使得Q2的导电量减少,而它的集电极电压则相应地增高了。

三极管振荡电路是怎样的,它的原理是什么?

Q2集电极升高的电压,是作为正电压藕合回Ql基极的。这样,Q1导电更多,从而引起它的集电极电压进一步下降,由于C2还在放电。故驱使Q2的基极电压向负的增大。

这个过程继续到最终Q2截止,而Ql在饱和状态下导通为止。此时,电容器C2仍然通过电阻器R对接地点放电。Q2级保持截止直至C2已充分放电使得Q2的基极电压超过截止值为止。然后Q2开始导通,这样就开始了多谐振荡器的第二个半周。

由于Q2开始导通,它的集电极电压就开始下降,导致电容器Cl通过电阻器Rl开始放电,这样,加到Q1基集的是负电压。Q1传导的电流因此而减小,并引起Ql集电极电压升高。

三极管振荡电路是怎样的,它的原理是什么?

Q2集电极升高的电压,是作为正电压藕合回Ql基极的。这样,Q1导电更多,从而引起它的集电极电压进一步下降,由于C2还在放电。故驱使Q2的基极电压向负的增大。

这个过程继续到最终Q2截止,而Ql在饱和状态下导通为止。此时,电容器C2仍然通过电阻器R对接地点放电。Q2级保持截止直至C2已充分放电使得Q2的基极电压超过截止值为止。然后Q2开始导通,这样就开始了多谐振荡器的第二个半周。

由于Q2开始导通,它的集电极电压就开始下降,导致电容器Cl通过电阻器Rl开始放电,这样,加到Q1基集的是负电压。Q1传导的电流因此而减小,并引起Ql集电极电压升高。

  • 三极管振荡电路是怎样的,它的原理是什么?已关闭评论
    A+
发布日期:2019年07月14日  所属分类:电子百科