大功率电池供电设备逆变器板如何助力热优化

电池供电电机控制方案为设计人员带来多项挑战,例如,优化印刷电路板热性能目前仍是一项棘手且耗时的工作;现在,应用设计人员可以用现代电热模拟器轻松缩短上市时间。

作者:

意法半导体: P. Lombardi, D. Cucchi, E. Poli

Cadence: S. Djordjevic, M. Biehl, M. Roshandell

如今,电池供电电机驱动解决方案通常可以用非常低的工作电压提供数百瓦的功率。在这些应用中,为确保整个系统的能效和可靠性,必须正确管理电机驱动设备的电流 。事实上,电机电流可能会超过数十安培,导致逆变器内部耗散功率提高。给逆变器元器件施加较高的功率将会导致逆变器工作温度升高,性能下降,如果超过最大允许额定功率,甚至会突然停止工作。优化热性能同时缩减尺寸,是逆变器设计过程中的重要一环,如果处理不当,可能会埋下隐患。用现场验证方法连续改进原型生产可以解决这个问题,但是,电热评估是完全分开的两个过程,并且在设计过程中从未考虑电-热耦合效应,因为这会导致多次重复设计,延长产品上市时间。目前电热评估有一种更有效的替代方法,就是利用现代模拟技术优化电机控制系统的电热性能。Cadence® Celsius™ Thermal Solver温度模拟器是行业领先的用于系统分析的电热协同仿真软件,可在短短几分钟内从电热两个角度全面准确地评估设计性能。作为世界领先的工业电机控制集成电路制造商,意法半导体用Celsius™ 软件改进了EVALSTDRIVE101 评估板的热性能,开发出一个输出电流高达 15 Arms的三相无刷电机逆变器,为终端应用设计人员开发逆变器提供了一个参考。在本文中,我们借此机会讲解如何减少热优化工作量,同时让EVALSTDRIVE101 达到生产级解决方案。

EVALSTDRIVE101

EVALSTDRIVE101 基于75 V三半桥栅极驱动器STDRIVE101和六个连成三个半桥的STL110N10F7 功率 MOSFET开关管。STDRIVE101采用4x4 毫米四方扁平无引脚 (QFN)封装,集成安全保护功能,非常适合电池供电解决方案。Celsius™ 显著简化了 EVALSTDRIVE101的热电性能优化过程,能够在短时间内实现尺寸紧凑的可靠设计。下面所示的模拟结果用于反复调整元器件的位置,改进板层和迹线的形状,调整板层厚度,增加或移除通孔,最终得到一个生产级逆变器解决方案。优化后,EVALSTDRIVE101是一块覆铜厚度2 oz的四层PCB板,宽 11.4 厘米,高 9 厘米,使用 36 V 电池电压向负载提供高达 15 Arms 电流。从热角度来看,EVALSTDRIVE101最关键的地方是功率级区域,其中包括功率MOSFET开关管、检流电阻、旁路陶瓷电容、大容量电解电容和输出端口。这部分的布局被大幅缩小,仅占整个电路板尺寸的一半,即 50 cm2。在这里,MOSFET 的放置和布线经过特别慎重考虑,因为在工作期间,逆变器大部分功率损耗都是由这些开关管造成的。所有MOSFET漏极端子的覆铜面积在顶层最大,在其它层尽可能做同样大或更大,以改善向底层表面导热的热传输效率。通过这种方式,电路板的正面和背面都有助于空气自然对流和热辐射。直径 0.5 毫米的通孔负责不同层之间的电连接和热传输,促进空气流动并改善冷却效果。通孔网格位于 MOSFET 裸露焊盘的正下方,但通孔直径减小到 0.3 毫米,以防止焊膏在孔中回流。

功耗估算

EVALSTDRIVE101的热优化过程是从评估逆变器运行期间的耗散功率开始的,逆变器是温度模拟器的一个输入端。逆变器损耗分为两类:在电路板迹线内因焦耳效应产生的功率损耗和电子元件造成的功率损耗。虽然Celsius™ 可以通过直接导入电路板布局数据精确计算电流密度和电路板损耗,但是,还必须考虑电子元件引起的损耗。虽然电路模拟器可以提供非常准确的结果,但我们还是决定用简化的公式算出合理的功率损耗,提出近似值。事实上,制造商可能无法获得元器件的电气模型,而且,因为缺乏建模数据,难以或无法从头开始建模,而我们提供的公式仅需要产品数据手册的基本信息。排除次生现象,引起逆变器耗散功耗的主要原因是检流电阻器 P_sh 和 MOSFET内部的功率损耗。这些损耗包括:导通损耗P_cond、开关损耗P_sw和二极管压降损耗P_dt:

大功率电池供电设备逆变器板如何助力热优化
参数定义数值
逆变器输出电流15 Arms
逆变器电源电压36 V
死时500 ns
开关频率20 kHz
MOSFET 导通电阻5 mΩ
MOSFET 米勒平台电荷18 nC
MOSFET 平台电压6 V
MOSFET导通阈压3 V
MOSFET输入电容5117 pF
MOSFET体二极管正向电压1 V
STDRIVE101栅极驱动电压12 V
导通栅极驱动电阻33 Ω
STDRIVE101灌电流0.6 A
检流电阻5 mΩ

每个 MOSFET 的估算耗散功率为1.303 W,每个检流电阻器的估算耗散功率为 0.281 W。

热模拟

大功率电池供电设备逆变器板如何助力热优化
图1. 电流环路模型
大功率电池供电设备逆变器板如何助力热优化
图3. 内层电压降模拟

Celsius™可以让设计人员做热模拟实验,包括系统电气分析,显示走线和通孔的电流密度和电压降。这些模拟试验要求设计人员必须在系统中使用电路模型,定义相关电流环路。图1所示是EVALSTDRIVE101的每个半桥所用的电路模型。模型包括位于输出和电源输入之间的两个恒流发生器和三个旁通 MOSFET 和检流电阻器的短路。这两个电流环路与整个电源轨和接地层的实际平均电流非常接近,而输出路径电流略微高一点,便于评估设计韧性。图 2 和图 3 显示了电流为 15 Arms的EVALSTDRIVE101 的电压降和电流密度。对地参考电压的压降突出了这个板子的布局经过特别优化,没有瓶颈,并且 U、V 和 W 的输出端在 43 mV、39 mV 和 34 mV 时电压降非常均衡。U输出端的压降最大,而W输出端的压降是三者中最低的,因为W端口到电源连接器的路径长度较短。电流在各个路径中分布均衡,平均密度低于 15 A/mm2,这是走线尺寸的功率推荐值。在 MOSFET、分流电阻器和连接器附近的一些区域是红色的,这代表电流密度较高,因为这些元器件的端子比下面的电源迹线小。不过,最大电流密度远低于 50 A/mm2 的限制,在实际应用中不会导致可靠性问题发生。

大功率电池供电设备逆变器板如何助力热优化