部署基于状态监测的机器健康解决方案,加速全球智能制造走向工业 4.0时代

全球工业正迎来新一轮变革。无论是德国提出的“工业4.0”,美国的“工业互联网”,还是中国的“中国制造2025”,三者本质上都指向一个核心——智能制造。全球工业变革提速大背景下,现代设备结构越来越复杂、自动化程度也越来越高,随之而来的是日常维护和故障检修难度的水涨船高。

 “如何保证设备系统低故障甚至无故障运行,减少因此带来的时间成本和经济成本的损失,成为全球智能制造业需要解决的问题。而随着维修理论和相关技术的发展,基于状态的监测(CBM)被认为是解决上述问题最佳途径。” ADI亚太区工业自动化行业市场部经理于常涛在最近的一场行业交流活动中指出。

部署基于状态监测的机器健康解决方案,加速全球智能制造走向工业 4.0时代

ADI亚太区工业自动化行业市场部经理于常涛

从振动及声音监测入手,实现多维度CBM可靠监测

基于状态的监控可以早期检测和实时诊断机器和系统的异常情况。识别并隔离这些问题后,就有机会优化替换件库存、安排停机时间以进行计划中的维护并进行运行时工艺过程调整,从而延长设备的有效使用寿命。对于当前工业状态监测中常用的分析方法,于常涛给出了如下的总结:

振动分析:振动分析是旋转设备(如压缩机,离心泵,电动机)最常用的监测技术。安装的振动传感器可监视轴向,垂直或水平方向的运动,并在运动过度时发送通知;

声音分析:声音分析与振动分析往往相辅相成,是工业领域应用最多的分析方式之一;

红外热成像:物体发出的辐射量随温度增加而增加。肉眼显然无法觉察,但可以通过红外热像仪轻松快速地检测到,不断监视通电设备中的温度不规则性;

部署基于状态监测的机器健康解决方案,加速全球智能制造走向工业 4.0时代

振动大量存在于各种工业系统中,基于MEMS技术提供了有效的健康监测

除此之外,还有润滑剂分析,电动机电流分析,外观检查等监测技术存在。“无论是电机、泵还是轴承和编码器,振动都是最常用的深入了解设备健康状况的关键信号。”于常涛强调到,“振动测量还可进一步隔离机械噪声和电气噪声,从而提供额外的数据,改善机器的诊断。”ADI近年来将振动监测作为其占据营收超过20%的工业应用向工业4.0发展的重要一环,并通过行业并购不断丰富包括声音监测在内的全面CBM解决方案组合。

高性能信号链升级,准确数据是振动监测的基本保障

公元132年,振动的原理激发张衡发明了地动仪;1946年,美国的物理学家利比博士利用铯、氨原子的天然振动创造出了迄今最先进的原子钟……振动在生活中无处不在的,在为人类社会带来创新灵感的同时也带来潜在损失甚至灾害性威胁,尤其是工业应用中。“机器在输入能量转化为有用功的过程中均会产生振动,但非正常振动会严重影响工业设备的健康状态,比如降低机械加工的精度和光洁度,加剧构件的疲劳和磨损,缩短机器和结构物的使用寿命、增加能耗、降低机器效率,甚至造成灾难性的事故。”于常涛指出,“当今工业应用中振动监测已经被认为是一种提高工业效率的有效手段,但如何更有效部署是在当前工业走向4.0时代的关键之一。”

部署基于状态监测的机器健康解决方案,加速全球智能制造走向工业 4.0时代