引言
在永磁同步电机(pmsm)中,用永磁体取代了同步电机转子中的励磁绕组,省去了励磁线圈、电刷和滑环,因而在其转子中不消耗励磁功率,所以,和其他类型的电动机相比,永磁同步电动机具有效率高、结构简单的优点。除此之外,永磁同步电动机还具有气隙磁密度高、功率密度大、转矩电流比高和大转矩惯量比等优点,其中永磁电动机的大转矩惯量比的优点保证了整个伺服系统可以获得大的加速度。近年来,随着电力电子器件、微处理器技术和控制技术的发展,永磁同步电动机已经被广泛地应用到了交流伺服领域[1]。
伺服系统经常用于实现快速、精确的位置控制,因而要求速度控制环具有优良的低速性能。利用直接转矩控制方法实现的速度控制环,具有很好的动态响应特性、简单明了的系统结构,但是,当系统低速运行时,存在着电磁转矩、定子磁链和定子电流脉动大等缺点,严重影响了整个系统的性能[2]。
本文针对永磁同步电动机,基于其动态数学模型,介绍了一种改进的直接转矩控制策略。在该控制策略中,引入了一种新的空间矢量调制技术,有效地降低了转矩、定子磁链和定子电流的波动。最后给出了仿真实验结果,实验结果验证了这种控制方法的有效性。
2 转矩波动分析
在按转子磁场定向的参考坐标系中,永磁同步电动机的磁链方程为[3]
(1)
式中:ψd、ψq分别为定子磁链矢量的d轴分量和q轴分量;id、iq分别为定子电流矢量的d轴分量和q轴分量;ψm为当永磁体的d轴和定子某相绕组的轴线重合时,在该绕组内产生的磁链。
永磁同步电动机的电压方程为
(2)
式中:p相当于微分算子d/dt;ωr为转子的电角速度;ud、uq分别为定子电压矢量的d轴和q轴分量;ld、lq分别为d轴和q轴的等效电感;rs为定子电阻。
对于一个隐极式永磁同步电动机,有ld=lq=lm,利用式(1)和式(2)可以得到,定子电流对时间的微分为
(3)
根据文献[1]可知,永磁同步电动机在按转子磁场定向的坐标系下,电磁转矩方程为
(4)
式中:tei为电磁转矩;
p为永磁同步电动机的极数。
对于隐极式永磁同步电动机,式(4)可以简化为
(5)
对式(5)两边求微分,有
(6)
根据式(6)和式(3)有:
(7)
如果采样周期ts充分小,可以认为
(8)
式中:k表示kts时刻的采样值;
k+1表示(k+1)ts时刻的采样值。
由式(7)、式(8)得
(9)
根据式(9)可知,4rstei(k)/3p总是阻碍转矩增加的,而且转矩越大,其影响程度越大。假设电机的转速为正,并且电机处于电动状态,则uq在一个控制周期内的平均值为正,由磁链感应产生的-ωrψd为负,当电机处于低速运行区域,ωr比较小,-ωrψd也比较小,这时-ωrψd影响可以忽略不计;当电机处于中、高速运行区域,ωr比较大,-ωrψd也比较大,当通过增加uq来增加电磁转矩时,由于-ωrψd的存在减小了转矩的增加速度。
3 新型直接转矩控制策略
针对直接转矩控制中存在的转矩波动问题,下面介绍一种改进的dtc控制方法——离散空间矢量调制直接转矩控制方法(dsvm——dtc),这种控制方法的核心是离散空间矢量调制法(dsvm),采用这种控制方法可以大大的减少dtc控制方法中的转矩波动。
从式(9)中可以看出,永磁同步电动机转速的大小对转矩的变化有很大的影响,-ωrψd的存在总是阻碍转矩的增加,转速越高,-ωrψd的阻碍作用越强,基于以上认识,在本文的控制方法中,把转速分为三个区域,分别称为:低速区、中速区、高速区。记ωn为额定角速度,从0rad/s到1/6ωn属于低速区,从1/6ωn 到1/2ωn属于中速区,从1/2ωn到ωn属于高速区。在低速区和中速区,控制算法使用6个扇区,而在高速区,则使用12个扇区,12个扇区的划分方法如图1所示。
图1 高速区的12个扇区划分
为了减少转矩脉动,转矩控制器使用了五级滞环比较器,而磁链控制器仍然使用两级滞环比较器,转矩控制器的输入输出关系见图2。
图2 转矩控制器的输入输出关系
在dsvm—dtc控制系统中,开关表的输入量有4个,











