1 引言
霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1mhz),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。
按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。
2 霍尔效应和霍尔器件
2.1 霍尔效应
如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场b,在薄片的横向两侧会出现一个电压,如图1中的vh,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。vh称为霍尔电压。
(a)霍尔效应和霍尔元件
这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。
在片子上作四个电极,其中c1、c2间通以工作电流i,c1、c2称为电流电极,c3、c4间取出霍尔电压vh,c3、c4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。(1)或(2)或(3)
在上述(1)、(2)、(3)式中vh是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,rh是霍尔系数,l、w、t分别是霍尔元件的长、宽和厚度,f(i/w)是几何修正因子,是由元件的几何形状和尺寸决定的,i是工作电流,v是两电流电极间的电压,p是元件耗散的功率。由(1)~(3)式可见,在霍尔元件中,ρ、rh、μn决定于元件所用的材料,i、w、t和f(i/w)决定于元件的设计和工艺,霍尔元件一旦制成,这些参数均为常数。因此,式(1)~(3)就代表了霍尔元件的三种工作方式所得的结果。(1)式表示电流驱动,(2)式表示电压驱动,(3)式可用来评估霍尔片能承受的最大功率。
为了精确地测量磁场,常用恒流源供电,令工作电流恒定,因而,被测磁场的磁感应强度b可用霍尔电压来量度。
在一些精密的测量仪表中,还采用恒温箱,将霍尔元件置于其中,令rh保持恒定。
若使用环境的温度变化,常采用恒压驱动,因和rh比较起来,μn随温度的变化比较平缓,因而vh受温度变化的影响较小。
为获得尽可能高的输出霍尔电压vh,可加大工作电流,同时元件的功耗也将增加。(3)式表达了vh能达到的极限——元件能承受的最大功耗。
2.2 霍尔器件
霍尔器件分为:霍尔元件和霍尔集成电路两大类,前者是一个简单的霍尔片,使用时常常需要将获得的霍尔电压进行放大。后者将霍尔片和它的信号处理电路集成在同一个芯片上。
2.2.1 霍尔元件
霍尔元件可用多种半导体材料制作,如ge、si、insb、gaas、inas、inasp以及多层半导体异质结构量子阱材料等等。
insb和gaas霍尔元件输出特性见图1(a)、图1(b).
(a)霍尔效应和霍尔元件
(b)insb霍尔元件的输出特性
(c)gaas霍尔元件的输出特性
图1 霍尔元件的结构和输出特性
这些霍尔元件大量用于直流无刷电机和测磁仪表。
2.2.2 霍尔电路
2.2.2.1 霍尔线性电路
它由霍尔元件、差分放大器和射极跟随器组成。其输出电压和加在霍尔元件上的磁感强度b成比例,它的功能框图和输出特性示于图2和图3。
这类电路有很高的灵敏度和优良的线性度,适用于各种磁场检测。霍尔线性电路的性能参数见表3。