浅谈热释电红外传感器原理和应用

  红外传感器

 

  红外传感系统是用红外线为介质的测量系统,按照功能可分成五类, 按探测机理可分成为光子探测器和热探测器。 红外传感技术已经在现代科技、国防和工农业等领域获得了广泛的应用

 

  红外线对射管的驱动分为电平型和脉冲型两种驱动方式。由红外线对射管阵列组成分离型光电传感器。该传感器的创新点在于能够抵抗外界的强光干扰。太阳光中含有对红外线接收管产生干扰的红外线,该光线能够将红外线接收二极管导通,使系统产生误判,甚至导致整个系统瘫痪。本传感器的优点在于能够设置多点采集,对射管阵列的间距和阵列数量可根据需求选取。

 

  红外线技术在测速系统中已经得到了广泛应用,许多产品已运用红外线技术能够实现车辆测速、探测等研究。红外线应用速度测量领域时,最难克服的是受强太阳光等多种含有红外线的光源干扰。外界光源的干扰成为红外线应用于野外的瓶颈。针对此问题,这里提出一种红外线测速传感器设计方案,该设计方案能够为多点测量即时速度和阶段加速度提供技术支持,可应用于公路测速和生产线下料的速度称量等工业生产中需要测量速度的环节。

 

  红外技术已经众所周知,这项技术在现代科技、国防科技和工农业科技等领域得到了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。

 

  红外传感器根据探测机理可分成为:光子探测器(基于光电效应)和热探测器(基于热效应)。

 

  原理

 

  待测目标

 

  根据待测目标的红外辐射特性可进行红外系统的设定。

 

  大气衰减

 

  待测目标的红外辐射通过地球大气层时,由于气体分子和各种气体以及各种溶胶粒的散射和吸收,将使得红外源发出的红外辐射发生衰减。

 

  光学接收器

 

  它接收目标的部分红外辐射并传输给红外传感器。相当于雷达天线,常用是物镜。

 

  辐射调制器

 

  对来自待测目标的辐射调制成交变的辐射光,提供目标方位信息,并可滤除大面积的干扰信号。又称调制盘和斩波器,它具有多种结构。

 

  红外探测器

 

  这是红外系统的核心。它是利用红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出的电学效应。此类探测器可分为光子探测器和热敏感探测器两大类型。

 

  探测器制冷器

 

  由于某些探测器必须要在高温下工作,所以相应的系统必须有制冷设备。经过制冷,设备可以缩短响应时间,提高探测灵敏度。

 

  信号处理系统

 

  将探测的信号进行放大、滤波,并从这些信号中提取出信息。然后将此类信息转化成为所需要的格式,最后输送到控制设备或者显示器中。

 

  显示设备

 

  这是红外设备的终端设备。常用的显示器有示波器、显像管、红外感光材料、指示仪器和记录仪等。

 

  依照上面的流程,红外系统就可以完成相应的物理量的测量。红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。

 

  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。

 

  图上所示为欧姆龙公司生产的漫反射式和对射式光电传感器,这两种传感器主要用于事件检测和物体定位。图中的红灯和绿灯表示传感器的状态。

 

  红外传感器已经在现代化的生产实践中发挥着它的巨大作用,随着探测设备和其他部分的技术的提高,红外传感器能够拥有更多的性能和更好的灵敏度。

 

  类型

 

  红外线传感器依动作可分为:

 

  (1) 将红外线一部份变换为热,藉热取出电阻值变化及电动势等输出信号之热型。

 

  (2) 利用半导体迁徙现象吸收能量差之光电效果及利用因PN 接合之光电动势效果的量子型。

 

  热型的现象俗称为焦热效应,其中最具代表性者有测辐射热器 (THERMAL BOLOMETER),热电堆(THERMOPILE)及热电(PYROELECTRIC)元件。

 

  热型的优点有:可常温动作下操作,波长依存性(波长不同感度有很大之变化者)并不存在,造价便宜;

 

  缺点:感度低、响应慢(MS之谱)。

 

  量子型 的优点:感度高、响应快速(ΜS 之谱);

 

  缺点:必须冷却(液体氮气) 、有波长依存性、价格偏高;

 

  红外线传感器特别是利用远红外线范围的感度做为人体检出用,红外线的波长比可见光长而比电波短。红外线让人觉得只由热的物体放射出来,可是事实上不是如此,凡是存在于自然界的物体,如人类、火、冰等等全部都会射出红外线,只是其波长因其物体的温度而有差异而已。人体的体温约为36~37°C,所放射出峰值为9~10微米的远红外线,另外加热至400~700°C的物体,可放射出峰值为3~5微米(不是MM)的中间红外线。

浅谈热释电红外传感器原理和应用

  随着社会的发展,各种方便于生活的自动控制系统开始进入了人们的生活,以热释电红外传感器为核心的自动门系统就是其中之一。热释电红外传感器是基于热电效应原理的热电型红外传感器。其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合虑光镜片窗口组成,其极化随温度的变化而变化。热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。

  1、热释电红外传感器原理

  1.1热释电红外传感器的原理特性

  热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器。不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。为了抑制因自身温度变化而产生的干扰该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化并将其转换为电信号输出。热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式即源极跟随器来完成阻抗变换。热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。由于加电极化的电压是有极性的,因此极化后的探测元也是有正、负极性的。

  1.2 被动式热释电红外传感器的工作原理与特性

  人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。

  1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。

  2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲泥尔滤光片,使环境的干扰受到明显的控制作用。

  3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

  4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。

  5)菲泥尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。

  被动式热释电红外探头的优缺点:

  优点:

  本身不发任何类型的辐射,器件功耗很小,隐蔽性好。价格低廉。

  缺点:

  1、容易受各种热源、光源干扰

  2、被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。

  3、易受射频辐射的干扰。

  4、环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。

  抗干扰性能:

  1、防小动物干扰

  探测器安装在推荐地使用高度,对探测范围内地面上地小动物,一般不产生报警。

  2、抗电磁干扰

  探测器的抗电磁波干扰性能符合GB10408中4.6.1要求,一般手机电磁干扰不会引起误报。

  3、抗灯光干扰

  探测器在正常灵敏度的范围内,受3米外H4卤素灯透过玻璃照射,不产生报警。

  红外线热释电传感器的安装要求:

  红外线热释电人体传感器只能安装在室内,其误报率与安装的位置和方式有极大的关系。正确的安装应满足下列条件:

  1、红外线热释电传感器应离地面2.0-2.2米。

  2、红外线热释电传感器远离空调, 冰箱,火炉等空气温度变化敏感的地方。

  3、红外线热释电传感器探测范围内不得隔屏、家具、大型盆景或其他隔离物。

  4、红外线热释电传感器不要直对窗口,否则窗外的热气流扰动和人员走动会引起误报,有条件的最好把窗帘拉上。红外线热释电传感器也不要安装在有强气流活动的地方。

  红外线热释电传感器对人体的敏感程度还和人的运动方向关系很大。红外线热释电传感器对于径向移动反应最不敏感, 而对于横切方向 (即与半径垂直的方向)移动则最为敏感。 在现场选择合适的安装位置是避免红外探头误报、求得最佳检测灵敏度极为重要的一环。

  1.3 热释电效应

  当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化产生的电极化现象,被称为热释电效应。通常,晶体自发极化所产生的束缚电荷被来自空气中附着在晶体表面的自由电子所中和,其自发极化电矩不能表现出来。当温度变化时,晶体结构中的正负电荷重心相对移位,自发极化发生变化,晶体表面就会产生电荷耗尽,电荷耗尽的状况正比于极化程度。

  能产生热释电效应的晶体称之为热释电体或热释电元件,其常用的材料有单(LiTaO3 等)、压电陶瓷(PZT等)及高分子薄膜(PVFZ等)。

  根据菲涅耳原理制成,把红外光线分成可见区和盲区,同时又有聚焦的作用,使热释电人体红外传感器 (PIR) 灵敏度大大增加。菲涅耳透镜折射式和反射式两种形式,其作用一是聚焦作用,将热释的红外信号折射(反射)在PIR上;二是将检测区内分为若干个明区和暗区,使进入检测区的移动物体能以温度变化的形式在PIR上产生变化热释红外信号,这样PIR就能产生变化电信号。

  如果我们在热电元件接上适当的电阻,当元件受热时,电阻上就有电流流过,在两端得到电压信号。

  2、 热释电红外传感器应用-自动门

  2.1 自动门设计原理

  在自动门领域中,被动式人体热释电红外线感应开关的应用非常广泛,因其性能稳定且能长期稳定可靠工作而受到广大用户的欢迎,这种开关主要由人体热释电红外线传感器、信号处理电路、控制及执行电路、电源电路等几部分组成。

  热释电红外自动门主要由光学系统、热释电红外传感器、信号滤波和放大、信号处理和自动门电路等几部分组成。菲涅尔透镜可以将人体辐射的红外线聚焦到热释电红外探测元上,同时也产生交替变化的红外辐射高灵敏区和盲区,以适应热释电探测元要求信号不断变化的特性;热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。

  在该探测技术中,所谓“被动”是指探测器本身不发出任何形式的能量,只是靠接收自然界能量或能量变化来完成探测目的。被动红外自动门的特点是能够响应人体在探测区域内移动时所引起的红外辐射变化,并能使监控报警器产生报警信号,从而完成报警功能。图6所示是该报警器的工作电路原理图。

  当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上时,电路中的传感器将输出电压信号,然后使该信号先通过一个由C1、C2、R1、R2组成的带通滤波器,该滤波器的上限截止频率为16Hz,下限截止频率为0.16Hz。由于热释电红外传感器输出的探测信号电压十分微弱(通常仅有1mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为0.1~10Hz左右),所以应对热释红外传感器输出的电压信号进行放大。本设计运用集成运算放大器LM324来进行两级放大,以使其获得足够的增益。当传感器探测到人体辐射的红外线信号并经放大后送给窗口比较器时,若信号幅度超过窗口比较器的上下限,系统将输出高电平信号;无异常情况时则输出低电平信号。在该比较器中,R9、R10、R11用做参考电压,两个运算放大器用做比较,两个二极管的主要作用是使输出更稳定。窗口比较器的上下限电压即参考电压分别为3.8V和1。2V。将这个高低电平变化的信号上升沿信号作为单稳电路HEF4538B的触发信号,并让其输出一个脉宽大约为10s的高电平信号。再用这一脉宽信号作为报警电路KD9561的输入控制信号,来使电路产生10s的报警信号,最后用三极管VT1和VT2再一次对电信号进行放大,以便有足够大的电流来驱动喇叭使其连续发出10s的报警声。

  前两个LM324是两级放大器。传感器检测到人体红外线后产生的感应信号很微弱,电路中设置了诸多旁路电容都是为了抑制干扰,避免误动作。后两个LM324是上、下限电压比较器。只有传感器感应产生的交变信号经放大达到足够电平才能使其输出为高电平,以控制后面继电器K1是否得电。K1得电,此时将进入自动门控制部分。K1得电则KA2得电吸合,KA2常开闭合自锁,电机开始正转,门就慢慢打开。当接触到行程开关QS1后,之前动作的触点复位,电机停止,门也不动了,一直处于开启状态。同时行程开关的常开触点闭合,时间继电器KT得电延时5S。5S后KT常开闭合, KA得电,KA3常开闭合自锁,电机开始反转,直到碰到行程开关QS2,门已关上,电机停止反转。以上为电路运行的所有过程。

  2.2 安装:

  元件选择与参数确定:

  这次设计中主要选择LM324作为主要芯片,因是这两块芯片在以前学过的书本中都有所接触,运用起来相对比较熟悉。LM324是一个具有两极放大的比较器。而在自动门控制电路中,我使用了继电器、时间继电器、行程开关等一些强电器件来实现自动门的正常工作。

  3.结 论

  随着相关信号处理器性能和可靠性的不断提高,热释电晶体已广泛用于红外光谱仪、红外遥感以及热辐射探测器,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎,广泛应用于各种自动化控制装置中,既可作为红外激光的一种较理想的探测器,又可适用于防盗报警、自动门等红外领域。

  • 浅谈热释电红外传感器原理和应用已关闭评论
    A+
发布日期:2019年07月14日  所属分类:电子百科