引 言
快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短的半导体二极管。对于高压工作的FRD来说,平面工艺不可避免的存在着结面弯曲效应而影响击穿电压,使得器件实际击穿电压只有理想情况的10%-30%。因此为了保证FRD能工作在高电压下,就需要使用结终端技术来消除结面弯曲带来的影响,提高FRD器件的耐压。在提高耐压采用终端技术的同时,还要兼顾到其它特性的影响和优化。如本文后面将要提到的,在采用金属场板终端提高耐压的同时,还要防止圆片打火问题的发生。
1场限环的基本结构
图1:场限环结构示意图
图2:多个场限环结构示意图
场限环的基本结构见图1,图2.。就是在被保护的主结周围间隔一定距离,扩散形成一定大小的同心环。扩散环改变了主结边缘空间电荷分布,减轻了电场集中效应。提高了耐压。单环的作用有限,一般在高压下需要通过多个环来达到预定的电压。
2 场板的基本结构分析
图3:场板结构示意图
场板的基本结构见图3,也是常用的提高耐压的方法之一。场板下除边缘部分外,电场分布是一维的,类似于MOS电容。击穿时的击穿电压为击穿时半导体的电压和氧化层的压降之和。在场版的边缘,电力线集中。如果场板长度比内部耗尽层还大,N+P结的场板有电力线从板向半导体发出,在半导体表面有电力线进入,这等效于半导体表面有正电荷,他对电场的影响可看做是无穷大的半导体中间增加了一层电荷,这些正电荷产生垂直于表面的场外,也将产生平行于表面的场,每一正电荷在其左边产生指向左的场,在其右边产生指向右的场。所以在场版下面的多数区域,正电荷产生的横向电场是互相削弱。然而在场板的边缘,所有正电荷产生的横向场是互相加强的,结果在那里造成一个横向场的峰值。如果场板很短或者无场板时,在PN结的边缘就有很强的电场,场板上所有正电荷都是使这点电场减少的,因此场板愈长,电场峰值愈小。
3 气隙的击穿特性
我们知道,影响空气间隙放电电压的因素有很多。主要有电场的情况,比如均匀与不均匀;电压的形式,比如直流,交流还是雷电冲击;大气的条件,比如温度,湿度,气压等。较均匀电场气隙的击穿电压与电压极性无关,直流,工频击穿电压(峰值)以及50%冲击击穿电压都相同,分散性很小。
当S不过于小时(S>1cm), 均匀空气中的电场强度大致等于30KV/cm。稍不均匀的电场气隙的击穿电压,可以看作球与球之间,球与板之间,圆柱与棒之间,同轴圆柱的间隙之间的击穿。它的特点是不能形成稳定的电晕放电,电场不对称时,有极性效应,不很明显,直流,工频下的击穿电压以及50%冲击击穿电压相同,分散性不大,击穿电压和电场均匀程度关系极大,电场越均匀,同样间隙距离下的击穿电压就越高。直流电压下的击穿电压具有极性效应,棒棒电极间的击穿电压介于极性不同的棒板电极之间,平均击穿场强正棒和负板间约4.5KV/cm,负棒和正板间约10KV/cm,棒和棒之间约4.8-5KV/cm。击穿电压与间隙距离接近正比,在一定范围内,击穿电压与间隙距离呈线性关系。球与球间隙之间存在邻近效应,对电场会有畸变作用,使间隙电场分布不对称,同一距离下,球直径越大,击穿电压也越高。
图4 击穿电压与间隙距离的关系