实时监控环境对于改善全球可持续发展至关重要。能够快速分析样本,并确认问题,是快速解决问题,尽可能减少对生态系统影响的关键。这种无处不在的实时传感应用改变了对液体传感器的需求,要求尺寸更小、更可靠、功耗更低,同时可提供高质量结果。随着行业不断发展,人们急需能够满足从环境水域到过程控制等各种应用需求的便携式检测智能平台。对此需求,本文将介绍一种便携式实时检测解决方案和原型制作平台,可快速实施液体检测。
一种常见的液体分析技术
监测液体的方法有很多种,目的都是测量样品中未知参数的浓度,如pH、荧光或浊度。一种常见的方法是通过光学技术评估液体,因为它具有非介入性,可提供稳定准确的结果。这种精密光学液体测量需要跨电子、光学和化学多领域知识。一般实验室测量方法进行分析时,首先将样品暴露在光源(如LED)下。与样品相互作用后,产生的光由光电二极管处理。将测得的响应结果绘制出来,与一组已知浓度的标准样品的测量响应结果相对照,生成校准曲线。利用校准曲线,可以确定液体内未知值。而为了满足更广泛的检测需求,必须进行调整以适应不同的分析物和测量技术,以及适合小尺寸应用,所有这些因素都增加了设计和评估的复杂程度。
图1 吸光度校准曲线示例
用于实施快速液体测量的模块化ADI解决方案
ADI公司的ADPD4101是一个光学模拟前端(AFE),能够驱动LED,并同步接收和处理来自光电二极管的信号,以进行高度精准的光学测量。ADPD4101具有高度可配置性,具有高达100dB的高光学信噪比和由片上同步检测方法提供的高环境光抑制,使其在许多情况下能够不配备光学暗箱直接使用。
CN0503参考设计旨在使用ADPD4101快速制作液体分析测量原型。CN0503采用ADPD4101作为核心产品,但增加了四条模块化光路,以及测量固件和应用软件,用于实施液体分析。CN0503直接连接至ADICUP3029板,用于管理测量例程和数据流。ADICUP3029板可以直接连接至笔记本电脑,以查看评估GUI中的结果。CN0503可以测量荧光、浊度、吸光度和色度。样品在比色皿中制备,并放置在3D打印的比色皿支架中,支架中装有光学元件,包括一个透镜和分束器。将比色皿支架插入适当的光路,以进行即插即用测量。此外,LED和光电二极管卡可以切换,来实现更大程度的自定义。
为了使用CN0503演示创建校准曲线和测量未知成分,将显示pH值、浊度和荧光的测量值。使用评估GUI进行测量,以创建校准曲线。计算噪声值和检测限制(LOD),以确定CN0503可以检测的每个样本的最低浓度。
图2 CN0503评估板
利用吸光度测量pH值
吸光度是指根据在特定波长下光的吸收量来确定溶液中已知溶质的浓度。根据比尔-朗伯吸收定律,浓度与吸光度成正比。许多无色分析物可以通过加入变色试剂来测定。本示例将演示测量pH值,从水质检测到废水处理,pH值是许多行业中常见的测量参数之一。吸光度测量可用于许多其他参数,包括溶解氧/生物需氧量、硝酸盐、氨和氯。
光学元件
测量吸光度的光路配置如图3所示。使用CN0503可以在任何光路(1到4)进行吸光度测量。入射光束指向分束器,由参考光电二极管在分束器中对光束强度进行采样。剩余的光功率直接穿过样本。采样光与参考光的比值消除了LED光源的变化和噪声,同步脉冲和接收窗口可提供环境光抑制。
图3 用于测量吸光度的光路
实验设备
►CN0503评估板
►EVAL-ADICUP3029评估板
►API pH测试和调节器套件
►pH标准品
图4 使用CN0503进行pH值测量
在本实验中,将显色剂(溴百里酚蓝)加入不同pH值的溶液中。再将溶液倒入比色皿中,在430nm和615nm两种不同波长下进行测试,其中指示剂显示了吸光的变化和pH。使用CN0503能轻松实施这种测量;可将两种不同波长的LED卡插入光路2和光路3中。然后将比色皿支架移动到不同的路径进行不同的测量。
结果
使用CN0503评估GUI,将两条光路的测量结果轻松导出到Excel表中。得出的两种不同波长的校准曲线如图5和图6所示。
图5 430nm下的pH吸光度校准曲线
图6 615nm下的pH吸光度校准曲线
在每种情况下,绘出pH值与吸光度的关系图,以创建校准曲线。然后使用添加趋势线选项来得到曲线的方程,通过这些方程来确定未知样本的浓度。传感器输出是x变量,得到的y值是pH值。这项实验可以手动完成,也可以使用CN0503来进行这项实验。该固件采用两个五阶多项式INS1和INS2。将多项式保存之后,就可以选择INS1或INS2模式,这样会直接以所需的单位报告测量结果--在本例中是pH值。因此可以非常简单快速地获取未知样本的结果。
为了获取噪声值,在每个波长选择两个不同的数据点:一个较低的pH值和一个较高的pH值。由于在这种情况下,曲线拟合不呈线性,所以使用了两个点。对每个点重复实施测量会得出标准偏差,即表1中所示的噪声值,该值描述了测量精度,排除了样本制备期间的差异。
表1 pH测量噪声值
LOD通常是通过测量低浓度的噪声,并乘以3得到99.7%的置信区间来确定的。由于pH值为对数标度,故选取pH值7作为检测LOD的数值,如表2所示。
表2. pH测量检测限值
测量浊度
液体样本的浊度测量利用了液体中悬浮颗粒的光散射特性,即测量液体的相对透明度。散射光的数量和散射角度的不同取决于颗粒的大小、浓度和入射光的波长。很多行业都会进行浊度测量,包括水质检测和生命科学领域。除一般浊度外,还可以使用CN0503通过测量光密度来测定藻类的生长情况。
光学元件
图7显示了使用90°或180°检测器进行浊度测量的光路。使用CN0503,因为需要使用90°检测器只能在光路1或4进行浊度测量。当然也可以使用多种测量配置和浊度标准。本示例演示了EPA Method 180.1的修改版本,使用比浊法浊度单位(NTU)进行校准和报告。
图7 浊度测量光路
实验设备
►CN0503评估板
►EVAL-ADICUP3029评估板
►Hanna Instruments®浊度标准校准装置
本实验采用光路4,插入530 nm LED板进行测试。
图8 浊度校准标准
结果
使用CN0503评估GUI,将测量结果导出到Excel表格中。得出的校准曲线如图9所示。
图9 浊度校准曲线
因为90°散射测量对高浑浊度的响应较差,所以响应曲线分为两个部分。一部分代表低浊度(0 NTU ~ 100NTU),另一部分代表高浊度(100NTU ~ 750NTU)。然后对每个部分进行两次线性拟合。即使现在有两个方程值,仍然可以使用CN0503来快速显示得出的NTU值。这是因为每个光路都可以在INS1和INS2中存储自己的方程值。注意,INS1和INS2是相互依赖的。第一个方程INS1的结果是第二个方程INS2的输入变量。存储方程值之后,INS1可用于测量低浊度样本,INS2可用于测量高浊度样本。
为了得出噪声值,可选择一个数据点来获取重复测量的标准偏差。标准偏差就是噪声值。因为方程拟合呈线性,所以在范围底部附近选取一个数据点。
表3 浊度测量噪声值
为了确定LOD,可测量空白或低浓度样本的噪声值,然后乘以3表示99.7%的置信区间。
表4 浊度测量检测限值
用菠菜溶液测量荧光
当光照射含有荧光分子的样本时,电子会进入更高能量状态,然后在发出更长波长的光之前失去一部分能量。荧光发射具有化学特异性,可用于确认介质中特定分子的存在和数量。在本示例中,通过菠菜叶来演示荧光叶绿素。在许多应用中,在生物测定、溶解氧、化学需氧量以及检测牛奶巴氏灭菌法是否成功时常用到荧光测量。
光学元件
测量荧光的光路配置如图10所示。使用CN0503,只能在光路1或4进行荧光测量,因为需要使用90°检测器。通常,将荧光检测器置于入射光90°的位置,使用单色或长通滤光片来增加激发光和发射光之间的隔离。荧光是一种非常灵敏的低电平测量,容易受到干扰,因此采用参考检测器和同步检测方法来减少误差源。
图10 荧光测量光路
实验设备
► CN0503评估板
► EVAL-ADICUP3029评估板
► 菠菜溶液
在本实验中,将菠菜叶和水混合,制成菠菜溶液。过滤之后,作为原液保存。然后将原液稀释,得到菠菜溶液百分比含量不同的样本。将它们作为标准,通过荧光绘制菠菜溶液的百分比曲线。使用光路1、365 nm LED卡和长通滤光片进行测量。
图11 用菠菜制成的叶绿素样本
结果
菠菜百分比含量溶液的校准曲线如图12所示。
图12 菠菜百分比含量溶液的校准曲线
可以存储该校准曲线的趋势线方程,以便CN0503直接以百分比形式报告结果。
为了得出噪声值,可选择两个不同的数据点:一个靠近范围底部,另一个靠近顶部,因为曲线拟合不呈线性。通过对每个点实施反复测量得出标准偏差,也就是噪声,如表5所示。
表5 荧光测量噪声值
为了确定LOD,可测量空白或低浓度样本的噪声值,然后乘以3表示99.7%的置信区间。
表6 荧光测量检测限值
结论
制作复杂光学液体分析测量的原型是一个挑战,需要仔细考虑化学、光学和电子如何相互作用,以得出准确的结果。集成式AFE产品(例如ADPD4101)为在更小的空间内实现更高性能的光学液体检测铺平了道路。CN0503基于ADPD4101构建,包括光学设计、固件和软件,是一个易于使用且高度可定制的快速原型制作平台,能够对吸光度、色度、浊度和荧光等液体参数进行准确的光学测量。