一种高效的蓄电池性能监测系统的设计方案

  0 引言

  蓄电池作为一种供电方便、安全可靠的直流电源,在电力、通信、军事等领域中得到了广泛的应用。温度是蓄电池的一个重要参数,它可以间接地反映电池的性能状况,并且根据此温度参数可以对电池进行智能化管理,以延长电池的寿命。在蓄电池组充放电维护及工作工程中,电池内部产生的热量会引起电池的温度发生变化,尤其是蓄电池过充电、电池内部电解液发生异常变化等原因均可能造成电池温度过高而造成电池损坏。

  传统上用人工定时测量的方法,劳动强度大、测量精度差,工作环境恶劣,尤其是不能及时发现异常单体电池,容易导致单体电池损坏,甚至导致整组电池故障或损坏;基于总线结构的有线多点温度监测系统,能够实现温度的智能化测量,但存在布线繁多复杂、维护扩展困难等不足。鉴于此,设计了一种基于单总线温度传感器和无线收发模块的电池温度无线监测系统,能够有效地克服热敏电阻测温和总线结构控制系统的不足,有利于提高蓄电池性能监测的智能化水平。

  1 单总线温度传感器DS18B20

  1.1 DS18B20芯片特性

  DS18B20数字温度传感器是美国DALLAS半导体公司生产的新一代适配微处理器的智能温度传感器,它将温度传感器、A/D转换器、寄存器及接口电路集成在一个芯片中,采用1-wire总线协议,可直接数字化输出、测试。与其他温度传感器相比,具有以下主要特性:

  采用独特的单线接口技术,与微处理器相连仅需一根端口线即可实现双向通信,占用微处理器的端口较少,可接收大量的引线和逻辑电路;使用中不需要任何外围电路,全部传感元件及转换电路都集成在形如一只三极管的集成电路内;测温范围- 55~ +125℃,精度可达±0.5℃,可编程9~12位A/D转换精度,测温分辨率可达0.0625℃,可实现高精度测温;测量结果直接输出数字温度信号,同时可传送CRC校验码,具有极强的抗干扰纠错能力;支持多点组网功能,多个DS18B20可挂在总线上,实现组网多点测温。适应电压范围宽:3.0~5.5V,在寄电源方式下可由数据线供电;DS18B20与单片机连接如图1所示,单总线器件只有一根数据线,系统中的数据交换、控制都在这根线上完成,单总线上外接一个4.7Ω的上拉电阻,以保证总线空闲时,状态为高电平。

  一种高效的蓄电池性能监测系统的设计方案

  图1 DS18B20与单片机硬件连接图

  1.2 DS18B20的控制时序

  DS18B20与微处理器间采用的是串行数据传送,在对其进行读写编程时,必须严格保证读写时序,否则将无法读取测温结果。DS18B20控制时序主要包括初始化时序、读操作时序和写操作时序,如图2所示。

  一种高效的蓄电池性能监测系统的设计方案

  图2 DS18B20控制时序

  (1)初始化时序。时序见图2(a),主机总线t0时刻发送一复位脉冲(最短为480s的低电平信号)接着在t1时刻释放总线并进入接收状态,DS18B20在检测到总线的上升沿之后等待15~60μs,接着DS18B20在t2时刻发出存在脉冲(低电平持续60~240s),如图中虚线所示。

  (2)写操作时序。当主机总线t0时刻从高拉至低电平时,就产生写时间隙。从t0时刻开始15μs之内应将所需写的位送到总线上,DS18B20在t0后15~60μs间对总线采样,若低电平写入的位是0,若高电平写入的位是1,连续写2位的间隙应大于1μs,见图2(b)。

  (3)读操作时序。当主机总线t0时刻从高拉至低电平时,总线只需保持低电平6~10μs之后,在t1时刻将总线拉高,产生读时间隙,读时间隙在t1时刻后到t2时刻前有效,t2~t0为15μs,也就是说,在t2时刻前主机必须完成读位,并在t0后的60~120μs内释放总线,见图2(c)。

  2 系统硬件设计

  监测系统主要由温度监测节点、主控单元和上位机等3部分组成,系统结构如图3所示。温度监测节点分布在蓄电池组的各个单体电池上,采集各单体电池的温度信息,通过无线网络传输给主控单元;主控单元与所有监测节点进行通信,接收上位机的命令和来自监测节点的温度信息,并将温度信息上报上位机;上位机实时显示蓄电池的温度信息,并对数据进行分析处理,根据设定的报警门限启动告警程序,及时发现异常电池。

  一种高效的蓄电池性能监测系统的设计方案

  图3 系统总体结构

  2.1 温度监测节点设计

  温度监测节点的功能是完成对单体电池的温度信息采集、处理和无线数据传输。采用单片机控制无线收发芯片nRF2401和单总线数字温度传感器DS18B20来实现温度的智能测量,主要包括单片机系统、温度采集电路、无线收发电路、显示电路、告警电路和电源等组成,其硬件结构如图4所示。

  一种高效的蓄电池性能监测系统的设计方案

  图4 温度监测节点硬件结构

技术专区

  • 利用电容传感技术进行液位测量的解决方案
  • 工业4.0重新带动西方制造业 或将扭转全球化趋势
  • 电缆故障检测方法
  • 用LM339制作水位计
  • 基于EWB的测温电路设计原理分析以及其优势
  • 一种高效的蓄电池性能监测系统的设计方案已关闭评论
    A+
发布日期:2019年07月14日  所属分类:工业控制