本文将介绍扩展中档数字存储示波器(DSO)基本功能的十个技巧,它们可以帮助你节省时间,并使你成为公司的DSO专家。你可以点击下面的链接直接查看某个具体技巧。
解调PWM信号
脉宽调制(PWM)被广泛应用于开关电源和电机控制器。分析控制环路的动态情况要求观察脉冲宽度随时间的变化。如果你的示波器具有电源分析选件包,那么你就能直接使用这个功能。如果你的示波器没有这方面的配置,你可以使用示波器的跟踪(某些示波器中的时间跟踪)功能解调出PWM控制信号。
首先,确保你的示波器包含所有实例测量。也就是说,如果你测量波形的宽度,示波器将测量屏幕上出现的波形的每个周期。示波器还应该包含依据测量到的参数产生波形的跟踪功能。宽度或“width@level”参数的跟踪可以显示每个周期脉宽随时间的变化,并且与源轨迹同步。因此宽度跟踪是解调PWM信号的理想工具。跟踪功能可以从参数或数学设置中访问。
图1显示了作为负载电流阶跃变化(轨迹C2,从上数第3个)响应的PWM控制器输出(轨迹C1,顶部轨迹)的跟踪轨迹F1,即展示width@level 参数与时间关系的(底部轨迹)。缩放轨迹Z1(从上数第2个)是水平方向放大了的随负载变化的控制器输出,展示了脉宽的变化。
参数可以像图1中那样应用于跟踪功能,其中参数P2到P4分别从跟踪波形中读取最大、最小、平均和最后一个脉冲宽度。
创建用于评估磁性器件的磁滞图
用于电感或变压器等电磁元件的磁滞或B/H曲线是一种常见的电源测量项目。磁性材料可以通过绘制作为磁场强度(H)函数的磁通密度(B)进行表征。这个功能有时在示波器的电源分析选件中提供。这种图也很容易在带X-Y显示器的任何示波器上创建。图2显示了如何连接电感和信号发生器产生B/H曲线。
H是磁场强度,单位为安培/米
B是磁通密度,单位特斯拉
A是横截面积,单位平方米
n是匝数
l是平均路径长度,单位米
v(t)是电感上的电压,单位伏特
i(t)是流过电感的电流,单位安培
需要注意的是,为了确定磁通密度,必须对电压波形求积分。
如果需要的话,你可以使用重定标数学函数对磁场强度和磁通密度进行调整。这要求掌握待测器件的物理特性知识,如上面公式中规定的那样。
图3显示了这种电压与电流经积分后的B/H曲线在示波器屏幕上显示的结果。从待测器件施加的电压用数学轨迹F1进行积分,并在数学轨迹F2中作了重新定标,最终在X-Y显示器的垂直轴上读取单位为特斯拉的磁通密度。电流波形在数学轨迹F3中得到重新定标,并应用于水平轴。
将波形数据重定标为合适的单位
在前一章节中,我们必须将电压波形的积分转换为磁通密度。这要求将波形除以一个常数(匝数与横截面的乘积)。另外,正确的单位应该是特斯拉。这些操作可以使用示波器的重定标数学函数来完成。重定标允许用户将波形乘上一个常数,然后再增加一个常数,而且可以通过配置用用户选择的单位覆盖原有单位(本例中是伏特)。本例中使用的示波器提供48种标准电气单位,包括特斯拉。
图4显示了数学轨迹F2的重定标设置。我们需要将电压波形的积分除以20&TImes;10-6,但因为重定标函数只提供与常数的相乘,因为我们需要使用倒数或 50&TImes;103。覆盖单位复选框打上勾后会提供一个单位输入域,我们在此输入代表特斯拉的T。这样将波形中的每个点乘以想要的常数就可以实现积分输出(数学轨迹F1)的重定标。F2数学轨迹的垂直坐标现在的读取单位就是特斯拉了。同样,数学轨迹F3用于将测量得到的电流重定标为磁场强度。
创建带通滤波器
你曾经有过用带通滤波器将目标信号与相邻通道干扰隔离开来的需求吗?大多数中档示波器都包含有增强分辨率(ERES)数学函数形式的低通滤波器,但没有带通滤波器,除非你有数字滤波器选件。你可以使用一些技巧将ERES低通滤波器转换成带通滤波器。图5显示了这一技巧。
左上角的轨迹C1是一种窄脉冲输入信号。设置好的数学函数F1用于对通道1的输入进行低通滤波。在这个案例中,ERES滤波器是16MHz的低通滤波器。轨迹F1(左边中间)显示了滤波器对时域信号的影响。在数学函数F2中,从输入中减去F1中低通滤波器的输出,从而去除低频内容,得到高通响应。F2中的第二次数学操作是另外一个截止频率为58MHz的ERES低通滤波器。结果就是轨迹F2(左下)中的带通响应。
轨迹F3(右上)显示了输入快速傅里叶变换(FFT)的频谱。F4(右中)是低通滤波过后的输入频谱。轨迹F5(右下)是带通滤波操作的频谱。对这些滤波器的控制受ERES函数中滤波器选择的限制。示波器中提供的数字滤波器选件包可以提供更大的灵活性,但这种小技巧在标准配置的示波器中都可以使用。
技术专区
- 慕尼黑电子展艾德克斯:结合配套软硬优势,提供最佳测试方案
- 益莱储与您相约EDICON 2018,助力客户踏上新征程
- 功率计数据测试不稳定该怎么办?
- 泰克解读物联网如何推动电源效率、测试策略的创新
- 基于TLC549数字电压表的设计