使用化学电池的电动汽车目前已试验过几十年,但至今尚末进入实用阶段。太阳能、风能、潮夕能、海浪能,都存在储存问题,目前主要靠化学电池,但受到化学蓄电池寿命及效率的制约,至今尚不能广泛应用。以上诸多问题,促使人们寻求一种效率高、寿命长、储能多、使用方便,而且无污染的绿色储能装置。出乎意料,古老的“飞轮”变成了首选对象。
“飞轮”这一储能元件,已被人们利用了数千年,从古老的纺车,到工业革命时的蒸汽机,以往主要是利用它的惯性来均衡转速和闯过“死点”,由于它们的工作周期都很短,每旋转一周时间不足一秒钟,在这样短的时间内,飞轮的能耗是可以忽略的。现在想利用飞轮来均衡周期长达12~24小时的能量,飞轮本身的能耗就变得非常突出了。能耗主要来自轴承摩擦和空气阻力。人们曾通过改变轴承结构,如变滑动轴承为滚动轴承、液体动压轴承、气体动压轴承等来减小轴承摩擦力,通过抽真空的办法来减小空气阻力,轴承摩擦系数已小到10-3。即使如此微小,飞轮所储的能量在一天之内仍有25%被损失,仍不能满足高效储能的要求。再一个问题是常规的飞轮是由钢(或铸铁)制成的,储能有限。例如,欲使一个发电力为100万千瓦的电厂均衡发电,储能轮需用钢材150万吨!另外要完成电能机械能的转换,还需要一套复杂的电力电子装置,因而飞轮储能方法一直未能得到广泛的应用。
近年来,飞轮储能技术取得突破性进展是基于下述三项技术的飞速发展:一是高能永磁及高温超导技术的出现;二是高强纤维复合材料的问世;三是电力电子技术的飞速发展。为进一步减少轴承损耗,人们曾梦想去掉轴承,用磁铁将转子悬浮起来,但试验结果是一次次失败。后来被一位英国学者从理论上阐明物体不可能被永磁全悬浮(Earnshaw定理),颇使试验者心灰意冷。出乎意料的是物体全悬浮之梦却在超导技术中得以实现,真像是大自然对探索者的慰藉。
超导磁悬浮原理是这样的:当我们将一块永磁体的一个极对准超导体,并接近超导体时,超导体上便产生了感应电流。该电流产生的磁场刚好与永磁的磁场相反,于是二者便产生了斥力。由于超导体的电阻为零,感生电流强度将维持不变。若永磁体沿垂直方向接近超导体,永磁体将悬空停在自身重量等于斥力的位置上,而且对上下左右的干扰都产生抗力,干扰力消除后仍能回到原来位置,从而形成稳定的磁悬浮。若将下面的超导体换成永磁体,则两永磁体之间在水平方向也产生斥力,故永磁悬浮是不稳定的。
利用超导这一特性,我们可以把具有一定质量的飞轮放在永磁体上边,飞轮兼作电机转子。当给电机充电时,飞轮增速储能,变电能为机械能;飞轮降速时放能,变机械能为电能。图1是储能飞轮装置的示意图,图中超导体是由钡钇铜合金制成,并用液氮冷却至77K,飞轮腔抽至10-8托的真空度(托为真空度单位,1Torr(托)=133.332Pa),这种飞轮能耗极小,每天仅耗掉储能的2%。
质量,v是速度。由于飞轮上各点的速度是不一样的,所以它的动能也可表达为:
式中∑是“求和”的表示,mi是轮上各点的质量,vi是轮上各点的速度。由上式可知,飞轮储能大小除与飞轮的质量(重量)有关外,还与飞轮上各点的速度有关,而且是平方的关系。因此提高飞轮的速度(转速)比增加质量更有效。但飞轮的转速受飞轮本身材料限制。转速过高,飞轮可能被强大的离心力撕裂。故采用高强度、低密度的高强复合纤维飞轮,能储存更多的能量。目前选用的碳纤维复合材料,其轮缘线速度可达1000米/秒,比子弹速度还要高。正是由于高强复合材料的问世,飞轮储能才进入实用阶段。
下面介绍一下国外飞轮储能的进展情况。
技术专区
- TIDA-01421用于无传感器位置测量的脉冲计数器参考设计
- TLE9842-2QX主要特性_PCB设计图
- CMU机器人研究所_无人驾驶上路测试牌照Gatik.AI
- DRV10983-Q1主要特性_功能框图
- 自动驾驶汽车由自动驾驶机器人系统操控