据麦姆斯咨询报道,激光雷达(LiDAR)与其它传感器技术(摄像头、雷达和超声波)的相互竞争增加了对传感器融合的需求,同时也要求对光电探测器、光源和MEMS微镜的仔细甄选。
随着传感器技术、成像技术、雷达、LiDAR、电子设备和人工智能技术的进步,数十种先进驾驶辅助系统(ADAS)功能已得以实现,包括防撞、盲点监测、车道偏离报警和停车辅助。通过传感器融合同步此类系统的运行,以允许全自动驾驶车辆或无人驾驶车辆对周围环境检测,并警告驾驶员潜在的道路危险,甚至可以采取独立于驾驶员的规避动作来避免碰撞。
自动驾驶汽车还必须能在高速情况下区分并识别前方物体。使用距离判断技术,这些自动驾驶汽车必须快速构建出约100米远道路的3D地图,并能在250米远的距离上创建出高角分辨率的图像。如果驾驶员不在场,汽车人工智能必须做出最优决策。
此任务的几种基本方法之一是,测量能量脉冲从自动驾驶汽车发出到目标再返回车辆的往返飞行时间(ToF)。当知道脉冲通过空气的速度时,就可以计算出反射点的距离。这个脉冲可以是超声波(声纳),也可以是无线电波(雷达)或光(LiDAR)。
这三种ToF技术,想拥有更高的角分辨率图像,LiDAR是最好的选择,这是因为LiDAR图像的衍射(光束散度)更小,对邻近物体识别能力比雷达更优秀(见图1)。对于高速情况下需要足够时间来应对如迎头相撞等潜在危险,更高的角分辨率尤为重要。
激光源的选择
在ToF LiDAR中,激光发出持续时间为τ的光脉冲,在发射的瞬间激活计时电路内部时钟(见图2)。从目标反射的光脉冲到达光电探测器时,会产生一种使时钟失效的输出电信号。这种电子测量往返ToF Δt 可计算出目标到反射点的距离R。
若现实中激光和光电探测器位于同一位置,其距离R是由以下两因素影响:
c为光在真空中的速度,n为传播介质的折射率(空气中折射率接近1)。这两个因素影响着距离分辨率ΔR:若激光点的直径大于要解析的目标大小,则测量Δt和脉冲的空间宽度w(w = cτ)的不确定性为δΔt。
第一个因子表示为ΔR = ? cδΔt,而第二个因子则表示为ΔR = ? w = ? cτ。若距离测量的分辨率为5 cm,以上关系表明:δΔt约为300 ps,τ约为300 ps。ToF LiDAR要求利用小时间抖动的光电探测器和电子探测器(主要对δΔt有贡献)和能发射短时脉冲的激光(如相对昂贵的皮秒激光)。在典型汽车LiDAR系统中,激光产生的脉冲持续时间约为4 ns,因此最小光束发散角是必需的。
图1 光束发散角取决于发射天线(雷达)或透镜(LiDAR)的孔径和波长的比值。此比例对于雷达产生的较大光束发散角和较小角分辨率来说是偏大的。如图,雷达(黑色)无法区分这两辆车,而LiDAR(红色)则可以
对汽车LiDAR系统设计者来说,最关键的就是选择光的波长。但有以下几项因素限制了此选择:人眼安全性、与大气的相互作用、可选用的激光器以及可选用的光电探测器。
最受欢迎的两种波长是905 nm和1550 nm,905 nm光波的主要优点是硅能吸收此波长的光子,而硅基光电探测器通常比探测1550 nm光波的砷化镓铟(InGaAs)红外(IR)光电探测器便宜。然而,1550 nm对人眼的安全性更高,允许激光使用的每个脉冲辐射能量更大——这是光子预算中的重要因素。
大气衰减(在所有的天气条件下),从空气中粒子的散射,以及目标物理表面的反射,都是依赖于波长的。但对于汽车LiDAR来说,由于天气条件和反射表面类型可能性众多,这是一个复杂的问题。在现实的环境中,由于1550 nm的吸水率比905 nm的更强,其实905 nm的光损失更少。
技术专区
- TIDA-01421用于无传感器位置测量的脉冲计数器参考设计
- 传特斯拉明年11月生产ModelY_与Model3同一平台
- TLE9842-2QX主要特性_PCB设计图
- CMU机器人研究所_无人驾驶上路测试牌照Gatik.AI
- DRV10983-Q1主要特性_功能框图