在多通道和数字音源时代,采用d类放大器以简化前级线路、提高功放效率从而降低对电源及散热的要求,这已是大势所趋。但d类功放虽然也被称作数字化功放,但在电路设计上绝不像纯粹的数字电路那么简单,也不是直接采用一两块芯片就可以大功告成的。以数字手段实现模拟功能,仍然需要考虑许多模拟方面的因素,但考虑的因素和角度与传统的线性功放又有很大差异。本文除了介绍d类放大器的基本原理和好处之外,还着重讲解了输出级设计、功放管选择、电源、电磁兼容,以及电路板布局方面需要注意的一些问题,这些实用知识有助于设计师减少走弯路的麻烦。
d类放大的好处
凭借诸如极佳的功率效率、较小的热量以及较轻的供电电源等优点,d类放大器正在音频世界掀起风暴,这一点儿也不令人惊奇。的确,随着技术的成熟以及其所达到越来越好的声音重现效果,看起来继续使用d类放大器向市场渗透是一个颇有把握的赌注,以往在这个市场上只有传统的线性(a类、b类或ab类)功率放大器能够提供令人满意的性能。
环绕声格式的不断进步加速了这种趋势。由于越来越多的家庭和车内娱乐系统、dvd播放器以及av接收机需要驱动六个或更多的扬声器,线性放大器及其电源的尺寸增大了,并且产生了更多的热量。例如,dolby digital(杜比数字)格式要求六个独立的输出级,而更新推出的dolby digital ex要求更多的8声道。鉴于此,d类放大技术的优势显得比以往更加突出。
输出级数模转换机制
所有d类系统的共同特点及其超群的功率效率的奥秘就在于输出级(通常是mosfet)的电源器件总是要么全通要么全关。这与线性放大器形成对比,线性放大器输出晶体管的导通状态随时间变化。晶体管消耗的功率是其压降与流过电流之积(p=iv),通常占到线性放大器消耗的总功率的50%或更多。在d类系统中不是这样。由于所有输出晶体管要么压降为零(处于“通”状态)要么流过的电流为零(处于“关”状态),理论上根本不会损失能量。回到现实世界中,安装在数以百万计的微处理器之上的冷却风扇表明即使是纯数字系统也会以发热的形式浪费能量,d类放大器达到的功率效率在85至90%之间。
不过,如何使一个天生只能产生方波的开关器件再现音乐中多种多样的波形呢?某些类型的高频“数字”信号可以通过低通滤波产生平滑的“模拟”输出。最广泛使用的就是脉宽调制(pwm:pulse width modulation)技术,其中矩形波的占空比与音频信号的振幅成正比。通过与一个高频锯齿波比较,可以很容易地将模拟输入转换为pwm(参见图1)。
图1 具有模拟输入的d类系统
但是,从cd和dvd光盘到数字广播和mp3,大多数当今的媒体格式都是数字的,在进行d类放大之前将其转换为模拟信号不可避免地会增加噪声并提高系统复杂性。在数字域将信号变换为pwm避免了这个问题,并且还消除了比较器和锯齿波发生器,这是两个天生会产生噪声和干扰的模拟元件(参见图2)。
图2 具有数字输入的d类系统
利用现有芯片功能
利用这种工作原理,wolfson microelectronics最近推出了一款pwm控制器。wm8608构成了具有多达6.1个输出声道的数字输入d类解决方案的基础。该方案采用了i2s或类似标准格式的数字输入,将每个声道转换为一个高频pwm信号,驱动由四个功率mosfet组成的输出级。然后由低通重建滤波器平均pwm信号,显现由原始数字信号代表的模拟电平。然后再将该经过滤波的信号传送到扬声器(参见图3)。
图3以wm8608为特色的系统方框图