基于RS频谱与信号分析仪的数字预失真原理

Doherty功率放大器虽然效率较高,但是其线性度通常较差,需要采用数字预失真技术对其线性化。为了满足越来越高的通信速率,Doherty功放的工作带宽也越来越宽。因此,为了评估Doherty功放的线性化性能,搭建宽带的数字预失真平台很有必要。本文采用基于R&S信号与频谱分析仪(FSW26)的数字预失真平台,对实验室的宽带Doherty功放进行了线性化实验。实验表明,无论是单频,并发双频,还是并发多频工作模式,宽带Doherty功放搭配数字预失真技术后都可获得较好的线性度。

1. 引言

随着通信速率变得越来越高,信号带宽也越来越宽,特别是载波聚合技术的采用,使得发射机所需支持的带宽也显著增加。面对载波聚合技术的挑战,一种较经济的发射机方案是并发多频发射机。这种场景下,一条发射通道既要能支持传统的单载波的通信信号,同时也需要能支持并发多频的载波聚合信号,因此,即发射通道的带宽也显著增加。发射通道上功率发大器的带宽是发射通道带宽的主要瓶颈,特别是Doherty功率放大器,虽然其效率明显优于传统的AB类功率放大器,但是典型的Doherty功率放大器的相对带宽只有10%左右。为了面对并发多频发射机的挑战,近几年来,宽带Doherty功放的设计成了功放研究领域的关注重点。

Doherty功率放大器的线性度较差,通常需要搭配数字预失真技术(DPD)才能在基站中使用。因此, 宽带Doherty功放除了效率、带宽指标需要关注外,能否线性化也是目前业内比较关注的话题。Doherty功放设计完成后,需要测试其DPD后的线性度性能,以完成对所设计的功放的整体性能评估。

2. 数字预失真原理

通常情况下,功率放大器在饱和工作状态下,效率更高,以Doherty功率放大器为例,在回退功率点,主路功放工作于饱和状态,在峰值功率点,主路功放和辅路功放均处于饱和状态,因此,Doherty功放在峰值和回退点都能获得较高的效率。然而,饱和状态下的功放由于增益压缩,会表现出非线性失真,即输出信号的带宽会比原始输入信号更宽。

基于RS频谱与信号分析仪的数字预失真原理

图1、数字预示真原理示意图

为了消除功放的这种失真,数字预失真技术的思路是在数字域对输入信号进行预先处理,相当于在基带信号上叠加了与功放失真信号大小相等,相位相反的分量,最终预先叠加的分量与功放自身产生的失真分量相互抵消,达到了线性化的目的。图1则是从增益的角度解释了数字预失真技术的原理,从中可看出,功放的增益(曲线的斜率) 在输入信号较大时会降低,而预失真模块的增益(曲线的斜率) 则是在输入信号较大时增益升高,最终二者级联,使得输入输出曲线为一条直线(增益平坦)。

技术专区

  • sub-6GHz非独立式的5G NR网络测试
  • LabVIEW的数控机床网及汽车仪表检测仪设计文献
  • 关于示波器设置的抖动完美测量
  • 多种激光器技术分类介绍
  • 双功率计测试通带插入损耗技术介绍
  • 基于RS频谱与信号分析仪的数字预失真原理已关闭评论
    A+
发布日期:2019年07月14日  所属分类:工业控制