1、 背景介绍
在zynq中,由于有PL部分的存在,操作系统需要对PL部分的物理地址进行操作,也就是对操作相关IP核的寄存器。除了在驱动中进行映射外(参看前一篇文章点击打开链接),可以直接在用户态进行地址映射访问。
2、 IO接口头文件
如果做过裸奔的应用程序,可以看到用户app最终调用的接口无非是下面以下这一类函数:
u8 Xil_In8(INTPTR Addr);
u16 Xil_In16(INTPTR Addr);
u32 Xil_In32(INTPTR Addr);
void Xil_Out8(INTPTR Addr, u8 Value);
void Xil_Out16(INTPTR Addr, u16 Value);
void Xil_Out32(INTPTR Addr, u32 Value);
u16 Xil_In16BE(INTPTR Addr);
u32 Xil_In32BE(INTPTR Addr);
void Xil_Out16BE(INTPTR Addr, u16 Value);
void Xil_Out32BE(INTPTR Addr, u32 Value);
在访问物理地址方面,没有比这一类函数更底层的了。当在Linux下对这一类函数加以实现,用户app便可直接访问PL部分物理地址。实现这一类函数需要进行物理映射,不过由于不是驱动,这种映射可以直接放在应用层实现。
下面是xil_in32()和xil_out32()的具体实现,映射时只需要对/dev/mem映射即可。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define PAGE_SIZE ((size_t)getpagesize())
#define PAGE_MASK ((uint64_t) (long)~(PAGE_SIZE - 1))
void Xil_Out32(uint64_t phyaddr, uint32_t val)
{
int fd;
volaTIle uint8_t *map_base;
uint64_t base = phyaddr & PAGE_MASK;
uint64_t pgoffset = phyaddr & (~PAGE_MASK);
if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
{
perror("open /dev/mem:");
}
map_base = mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, base);
if(map_base == MAP_FAILED)
{
perror("mmap:");
}
*(volaTIle uint32_t *)(map_base + pgoffset) = val;
close(fd);
munmap((void *)map_base, PAGE_SIZE);
}
int Xil_In32(uint64_t phyaddr)
{
int fd;
uint32_t val;
volaTIle uint8_t *map_base;
uint64_t base = phyaddr & PAGE_MASK;
uint64_t pgoffset = phyaddr & (~PAGE_MASK);
//open /dev/mem
if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
{
perror("open /dev/mem:");
}
//mmap
map_base = mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, base);
if(map_base == MAP_FAILED)
{
perror("mmap:");
}
val = *(volaTIle uint32_t *)(map_base + pgoffset);
close(fd);
munmap((void *)map_base, PAGE_SIZE);
return val;
}
3、 应用层实现
应用层中只需要指定起始物理地址,然后调用xil_in32()和xil_out32()进行操作,为了调用方便,可以封装一层。
#ifndef SMARTCARMOVE_H
#define SMARTCARMOVE_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "move.h"
static int fd;
#define MODE (O_WRONLY | O_TRUNC)
/*
static char *gpio_addr[] = {
"/sys/class/gpio/export",
"/sys/class/gpio/gpio61/direction/","/sys/class/gpio/gpio61/value/",
"/sys/class/gpio/gpio62/direction/","/sys/class/gpio/gpio62/value/",
"/sys/class/gpio/gpio63/direction/","/sys/class/gpio/gpio63/value/",
"/sys/class/gpio/gpio64/direction/","/sys/class/gpio/gpio64/value/"
};
*/
extern void rio_setreg32(unsigned int addrBase,unsigned int addrOffset,unsigned int value);
extern int rio_getreg32(unsigned int addrBase,unsigned int addrOffset);
extern int hlMaintWrite(unsigned int dstId,unsigned short hopcount, unsigned int offset, unsigned int writedata);
extern int hlMaintRead(unsigned int dstId,unsigned short hopcount, unsigned int offset, int mrdataAdr);
#endif
#include "xil_io.h"
#include "move.h"
#define AXI_RIO_BASEADDR 0x40000000
#define AXI_RIO_NODE_BASEADDR 0x10100
#define AXI_RIO_MAX_HOPCOUNT 13
/**
read and write phy mem
* */
void rio_setreg32(unsigned int addrBase,unsigned int addrOffset,unsigned int value)
{
Xil_Out32(addrBase+addrOffset, value);
}
int rio_getreg32(unsigned int addrBase,unsigned int addrOffset)
{
int ans=0;
ans=Xil_In32(addrBase+addrOffset);
return ans;
}
int hlMaintWrite(unsigned int dstId,unsigned short hopcount, unsigned int offset, unsigned int writedata)
{
unsigned int reg_addr;
if( hopcount > AXI_RIO_MAX_HOPCOUNT )
{
printf("!!!error, hopcount = %d, > %d\n",hopcount,AXI_RIO_MAX_HOPCOUNT);
return -1;
}
rio_setreg32(AXI_RIO_BASEADDR,AXI_RIO_NODE_BASEADDR,dstId);
reg_addr = (((hopcount+1)<<24)|offset);
rio_setreg32(AXI_RIO_BASEADDR,reg_addr,writedata);
return 0;
}
int hlMaintRead(unsigned int dstId,unsigned short hopcount, unsigned int offset, int mrdataAdr)
{
unsigned int reg_addr;
if( hopcount > AXI_RIO_MAX_HOPCOUNT )
{
printf("!!!error, hopcount = %d, > %d\n",hopcount,AXI_RIO_MAX_HOPCOUNT);
return -1;
}
rio_setreg32(AXI_RIO_BASEADDR,AXI_RIO_NODE_BASEADDR,dstId);
reg_addr = (((hopcount+1)<<24)|offset);
mrdataAdr = rio_getreg32(AXI_RIO_BASEADDR,reg_addr);
printf("M_SRIO_MAINT_REG_READ: hopcount = %d, offset = 0x%x, value = 0x%x\n",hopcount,offset,mrdataAdr);
return 0;
}
int main(int argc, char *argv[])
{
int mtRdata=0;
printf("get 1848 device id through rio\n");
hlMaintRead(0xFF,0, 0, mtRdata);
printf("ok\n");
return 0;
}
运行结果如下,可以看到和在驱动中实现一样
4、 总结
出于安全考虑,在用户态中直接访问物理地址,这种做法在linux中不常见,不过对于zynq来说这种方法要比实现驱动后再通过app调用驱动接口间接明了的多。也可以这样说,是把驱动移植到了用户态中,在用户态下实现地址映射。考虑到这一点,上面给出的例子可以作为用户态中提供给更上一层app的接口,这样就能避免真正的用户直接接触物理地址。
技术专区
- Linux下flash操作读、写、擦除步骤
- zynq中PL部分的物理地址操作函数
- Windows下linux权限管理问题解析
- 据说嵌入式工程师年薪10万是门槛 达到后你满足了吗?
- 嵌入式系统的主要特点是什么_嵌入式操作系统有什么优势